
Liblouis User’s and Programmer’s Manual
for version 2.6.2, 25 November 2014

by John J. Boyer

This manual is for liblouis (version 2.6.2, 25 November 2014), a Braille Translation and
Back-Translation Library derived from the Linux screen reader BRLTTY.

Copyright c© 1999-2006 by the BRLTTY Team.

Copyright c© 2004-2007 ViewPlus Technologies, Inc. www.viewplus.com.

Copyright c© 2007,2009 Abilitiessoft, Inc. www.abilitiessoft.com.

Copyright c© 2014 Swiss Library for the Blind, Visually Impaired and Print Disabled.

This file is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser (or library) General Public License (LGPL) as pub-
lished by the Free Software Foundation; either version 3, or (at your option)
any later version.

This file is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser (or Library)
General Public License LGPL for more details.

You should have received a copy of the GNU Lesser (or Library) General Public
License (LGPL) along with this program; see the file COPYING. If not, write
to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

www.viewplus.com
www.abilitiessoft.com

i

Table of Contents

1 Introduction . 1
1.1 Who is this manual for . 1
1.2 How to read this manual . 1

2 How to Write Translation Tables 2
2.1 Overview . 2
2.2 Hyphenation Tables . 4
2.3 Character-Definition Opcodes . 5
2.4 Braille Indicator Opcodes . 7
2.5 Emphasis Opcodes . 8
2.6 Special Symbol Opcodes . 10
2.7 Special Processing Opcodes . 11
2.8 Translation Opcodes . 11
2.9 Character-Class Opcodes . 15
2.10 Swap Opcodes . 16
2.11 The Context and Multipass Opcodes . 17
2.12 The correct Opcode . 20
2.13 Miscellaneous Opcodes . 20
2.14 Deprecated Opcodes . 21

3 Notes on Back-Translation . 23

4 Testing Translation Tables interactively 24
4.1 lou debug . 24
4.2 lou trace . 25
4.3 lou checktable . 26
4.4 lou allround . 26
4.5 lou translate . 27
4.6 lou checkhyphens . 27

5 Automated Testing of Translation Tables 28
5.1 Translation Table Test Harness . 28
5.2 Translation Table Doctests . 29

6 Programming with liblouis . 30
6.1 License . 30
6.2 Overview . 30
6.3 Data structure of liblouis tables . 31
6.4 lou version . 32
6.5 lou translateString . 32
6.6 lou translate . 33

ii

6.7 lou backTranslateString . 34
6.8 lou backTranslate . 34
6.9 lou hyphenate . 35
6.10 lou compileString . 35
6.11 lou dotsToChar . 35
6.12 lou charToDots . 36
6.13 lou registerLogCallback . 36
6.14 lou setLogLevel . 36
6.15 lou logFile . 37
6.16 lou logPrint (deprecated) . 37
6.17 lou logEnd . 37
6.18 lou setDataPath . 37
6.19 lou getDataPath . 37
6.20 lou getTable . 37
6.21 lou readCharFromFile . 38
6.22 lou free . 38
6.23 Python bindings . 38

Opcode Index . 39

Function Index . 41

Program Index . 42

1

1 Introduction

Liblouis is an open-source braille translator and back-translator derived from the translation
routines in the BRLTTY screen reader for Linux. It has, however, gone far beyond these
routines. It is named in honor of Louis Braille. In Linux and Mac OSX it is a shared library,
and in Windows it is a DLL. For installation instructions see the README file. Please
report bugs and oddities to the mailing list, liblouis-liblouisxml@freelists.org

This documentation is derived from Chapter 7 of the BRLTTY manual, but it has been
extensively rewritten to cover new features.

1.1 Who is this manual for

This manual has two main audiences: People who want to write or improve a braille trans-
lation table and people who want to use the braille translator library in their own programs.
This manual is probably not for people who are looking for some turn-key braille translation
software.

1.2 How to read this manual

If you are mostly interested in writing braille translation tables then you want to focus on
Chapter 2 [How to Write Translation Tables], page 2. You might want to look at Chapter 3
[Notes on Back-Translation], page 23, if you are interested in back-translation. Finally
Chapter 4 [Testing Translation Tables interactively], page 24, and Chapter 5 [Automated
Testing of Translation Tables], page 28, will show how your braille translation tables can
be tested interactively and also in an automated fashion.

If you want to use the braille translation library in your own program or you are interested
in enhancing the braille translation library itself then you will want to look at Chapter 6
[Programming with liblouis], page 30.

mailto:liblouis-liblouisxml@freelists.org

2

2 How to Write Translation Tables

For many languages there is already a translation table, so before creating a new table start
by looking at existing tables to modify them as needed.

Typically, a braille translation table consists of several parts. First are header and
includes, in which you write what the table is for, license information and include tables
you need for your table.

Following this, you’ll write various translation rules and lastly you write special rules to
handle certain situations.

A translation rule is composed of at least three parts: the opcode (translation command),
character(s) and braille dots. An opcode is a command you give to a machine or a program
to perform something on your behalf. In liblouis, an opcode tells it which rule to use when
translating characters into braille. An operand can be thought of as parameters for the
translation rule and is composed of two parts: the character or word to be translated and
the braille dots.

For example, suppose you want to read the word ‘world’ using braille dots ‘456’, followed
by the letter ‘W’ all the time. Then you’d write:

always world 456-2456

The word always is an opcode which tells liblouis to always honor this translation, that
is to say when the word ‘world’ (an operand) is encountered, always show braille dots ‘456’
followed by the letter ‘w’ (‘2456’).

When you write any braille table for any language, we’d recommend working from some
sort of official standard, and have a device or a program in which you can test your work.

2.1 Overview

Many translation (contraction) tables have already been made up. They are included in
the distribution in the tables directory and can be studied as part of the documentation.
Some of the more helpful (and normative) are listed in the following table:

chardefs.cti

Character definitions for U.S. tables

compress.ctb

Remove excessive whitespace

en-us-g1.ctb

Uncontracted American English

en-us-g2.ctb

Contracted or Grade 2 American English

en-us-brf.dis

Make liblouis output conform to BRF standard

en-us-comp8.ctb

8-dot computer braille for use in coding examples

en-us-comp6.ctb

6-dot computer braille

Chapter 2: How to Write Translation Tables 3

nemeth.ctb

Nemeth Code translation for use with liblouisutdml

nemeth_edit.ctb

Fixes errors at the boundaries of math and text

The names used for files containing translation tables are completely arbitrary. They
are not interpreted in any way by the translator. Contraction tables may be 8-bit ASCII
files, UTF-8, 16-bit big-endian Unicode files or 16-bit little-endian Unicode files. Blank lines
are ignored. Any leading and trailing whitespace (any number of blanks and/or tabs) is
ignored. Lines which begin with a number sign or hatch mark (‘#’) are ignored, i.e. they are
comments. If the number sign is not the first non-blank character in the line, it is treated
as an ordinary character. If the first non-blank character is less-than (‘<’) the line is also
treated as a comment. This makes it possible to mark up tables as xhtml documents. Lines
which are not blank or comments define table entries. The general format of a table entry
is:

opcode operands comments

Table entries may not be split between lines. The opcode is a mnemonic that specifies
what the entry does. The operands may be character sequences, braille dot patterns or
occasionally something else. They are described for each opcode, please see [Opcode Index],
page 39. With some exceptions, opcodes expect a certain number of operands. Any text on
the line after the last operand is ignored, and may be a comment. A few opcodes accept a
variable number of operands. In this case a number sign (‘#’) begins a comment unless it
is preceded by a backslash (‘\’).

Here are some examples of table entries.

This is a comment.

always world 456-2456 A word and the dot pattern of its contraction

Most opcodes have both a "characters" operand and a "dots" operand, though some
have only one and a few have other types.

The characters operand consists of any combination of characters and escape sequences
proceeded and followed by whitespace. Escape sequences are used to represent difficult
characters. They begin with a backslash (‘\’). They are:

\ backslash

\f form feed

\n new line

\r carriage return

\s blank (space)

\t horizontal tab

\v vertical tab

\e "escape" character (hex 1b, dec 27)

\xhhhh 4-digit hexadecimal value of a character

If liblouis has been compiled for 32-bit Unicode the following are also recognized.

\yhhhhh 5-digit (20 bit) character

Chapter 2: How to Write Translation Tables 4

\zhhhhhhhh

Full 32-bit value.

The dots operand is a braille dot pattern. The real braille dots, 1 through 8, must be
specified with their standard numbers. liblouis recognizes "virtual dots," which are used for
special purposes, such as distinguishing accent marks. There are seven virtual dots. They
are specified by the number 9 and the letters ‘a’ through ‘f’. For a multi-cell dot pattern,
the cell specifications must be separated from one another by a dash (‘-’). For example, the
contraction for the English word ‘lord’ (the letter ‘l’ preceded by dot 5) would be specified
as 5-123. A space may be specified with the special dot number 0.

An opcode which is helpful in writing translation tables is include. Its format is:

include filename

It reads the file indicated by filename and incorporates or includes its entries into
the table. Included files can include other files, which can include other files, etc. For
an example, see what files are included by the entry include en-us-g1.ctb in the table
en-us-g2.ctb. If the included file is not in the same directory as the main table, use a
full path name for filename. Tables can also be specified in a table list, in which the table
names are separated by commas and given as a single table name in calls to the translation
functions.

The order of the various types of opcodes or table entries is important. Character-
definition opcodes should come first. However, if the optional display opcode (see
[display], page 20) is used it should precede character-definition opcodes. Braille-indicator
opcodes should come next. Translation opcodes should follow. The context opcode (see
[context], page 17) is a translation opcode, even though it is considered along with the
multipass opcodes. These latter should follow the translation opcodes. The correct

opcode (see [correct], page 20) can be used anywhere after the character-definition
opcodes, but it is probably a good idea to group all correct opcodes together. The
include opcode (see [include], page 20) can be used anywhere, but the order of entries in
the combined table must conform to the order given above. Within each type of opcode,
the order of entries is generally unimportant. Thus the translation entries can be grouped
alphabetically or in any other order that is convenient. Hyphenation tables may be
specified either with an include opcode or as part of a table list. They should come after
everything else. Character-definition opcodes are necessary for hyphenation tables to work.

2.2 Hyphenation Tables

Hyphenation tables are necessary to make opcodes such as the nocross opcode (see
[nocross], page 13) function properly. There are no opcodes for hyphenation table entries
because these tables have a special format. Therefore, they cannot be specified as part
of an ordinary table. Rather, they must be included using the include opcode (see
[include], page 20) or as part of a table list. The liblouis hyphenation algorithm was
adopted from the one used by OpenOffice. Note that Hyphenation tables must follow
character definitions and should preferably be the last. For an example of a hyphenation
table, see hyph_en_US.dic.

Chapter 2: How to Write Translation Tables 5

2.3 Character-Definition Opcodes

These opcodes are needed to define attributes such as digit, punctuation, letter, etc. for all
characters and their dot patterns. liblouis has no built-in character definitions, but such
definitions are essential to the operation of the context opcode (see [context], page 17), the
correct opcode (see [correct], page 20), the multipass opcodes and the back-translator.
If the dot pattern is a single cell, it is used to define the mapping between dot patterns
and characters, unless a display opcode (see [display], page 20) for that character-dot-
pattern pair has been used previously. If only a single-cell dot pattern has been given for
a character, that dot pattern is defined with the character’s own attributes. If more than
one cell is given and some of them have not previously been defined as single cells, the
undefined cells are entered into the dots table with the space attribute. This is done for
backward compatibility with old tables, but it may cause problems with the above opcodes
or back-translation. For this reason, every single-cell dot pattern should be defined before
it is used in a multi-cell character representation. The best way to do this is to use the
8-dot computer braille representation for the particular braille code. If a character or dot
pattern used in any rule, except those with the display opcode, the repeated opcode
(see [repeated], page 12) or the replace opcode (see [replace], page 12), is not defined
by one of the character-definition opcodes, liblouis will give an error message and refuse
to continue until the problem is fixed. If the translator or back-translator encounters an
undefined character in its input it produces a succinct error indication in its output, and
the character is treated as a space.

space character dots

Defines a character as a space and also defines the dot pattern as such. for
example:

space \s 0 \s is the escape sequence for blank; 0 means no dots.

punctuation character dots

Associates a punctuation mark in the particular language with a braille rep-
resentation and defines the character and dot pattern as punctuation. For
example:

punctuation . 46 dot pattern for period in NAB computer braille

digit character dots

Associates a digit with a dot pattern and defines the character as a digit. For
example:

digit 0 356 NAB computer braille

uplow characters dots [,dots]

The characters operand must be a pair of letters, of which the first is uppercase
and the second lowercase. The first dots suboperand indicates the dot pattern
for the upper-case letter. It may have more than one cell. The second dots
suboperand must be separated from the first by a comma and is optional, as
indicated by the square brackets. If present, it indicates the dot pattern for
the lower-case letter. It may also have more than one cell. If the second dots
suboperand is not present the first is used for the lower-case letter as well as
the upper-case letter. This opcode is needed because not all languages follow a
consistent pattern in assigning Unicode codes to upper and lower case letters.

Chapter 2: How to Write Translation Tables 6

It should be used even for languages that do. The distinction is important in
the forward translator. for example:

uplow Aa 17,1

grouping name characters dots ,dots

This opcode is used to indicate pairs of grouping symbols used in process-
ing mathematical expressions. These symbols are usually generated by the
MathML interpreter in liblouisutdml. They are used in multipass opcodes. The
name operand must contain only letters, but they may be upper- or lower-case.
The characters operand must contain exactly two Unicode characters. The dots
operand must contain exactly two braille cells, separated by a comma. Note
that grouping dot patterns also need to be declared with the exactdots opcode
(see [exactdots], page 14). The characters may need to be declared with the
math opcode (see [math], page 6).

grouping mrow \x0001\x0002 1e,2e

grouping mfrac \x0003\x0004 3e,4e

letter character dots

Associates a letter in the language with a braille representation and defines the
character as a letter. This is intended for letters which are neither uppercase
nor lowercase.

lowercase character dots

Associates a character with a dot pattern and defines the character as a lower-
case letter. Both the character and the dot pattern have the attributes lowercase
and letter.

uppercase character dots

Associates a character with a dot pattern and defines the character as an up-
percase letter. Both the character and the dot pattern have the attributes
uppercase and letter. lowercase and uppercase should be used when a letter
has only one case. Otherwise use the uplow opcode (see [uplow], page 5).

litdigit digit dots

Associates a digit with the dot pattern which should be used to represent it in
literary texts. For example:

litdigit 0 245

litdigit 1 1

sign character dots

Associates a character with a dot pattern and defines both as a sign. This
opcode should be used for things like at sign (‘@’), percent (‘%’), dollar sign
(‘$’), etc. Do not use it to define ordinary punctuation such as period and
comma. For example:

sign % 4-25-1234 literary percent sign

math character dots

Associates a character and a dot pattern and defines them as a mathematical
symbol. It should be used for less than (‘<’), greater than(‘>’), equals(‘=’),
plus(‘+’), etc. For example:

math + 346 plus

Chapter 2: How to Write Translation Tables 7

2.4 Braille Indicator Opcodes

Braille indicators are dot patterns which are inserted into the braille text to indicate such
things as capitalization, italic type, computer braille, etc. The opcodes which define them
are followed only by a dot pattern, which may be one or more cells.

capsign dots

The dot pattern which indicates capitalization of a single letter. In English,
this is dot 6. For example:

capsign 6

begcaps dots

The dot pattern which begins a block of capital letters. For example:

begcaps 6-6

endcaps dots

The dot pattern which ends a block of capital letters within a word. For exam-
ple:

endcaps 6-3

letsign dots

This indicator is needed in Grade 2 to show that a single letter is not a contrac-
tion. It is also used when an abbreviation happens to be a sequence of letters
that is the same as a contraction. For example:

letsign 56

noletsign letters

The letters in the operand will not be proceeded by a letter sign. More than one
noletsign opcode can be used. This is equivalent to a single entry containing
all the letters. In addition, if a single letter, such as ‘a’ in English, is defined as
a word (see [word], page 13) or largesign (see [largesign], page 12), it will
be treated as though it had also been specified in a noletsign entry.

noletsignbefore characters

If any of the characters proceeds a single letter without a space a letter sign is
not used. By default the characters apostrophe (‘’’) and period (‘.’) have this
property. Use of a noletsignbefore entry cancels the defaults. If more than
one noletsignbefore entry is used, the characters in all entries are combined.

noletsignafter characters

If any of the characters follows a single letter without a space a letter sign is
not used. By default the characters apostrophe (‘’’) and period (‘.’) have this
property. Use of a noletsignafter entry cancels the defaults. If more than
one noletsignafter entry is used the characters in all entries are combined.

numsign dots

The translator inserts this indicator before numbers made up of digits defined
with the litdigit opcode (see [litdigit], page 6) to show that they are a
number and not letters or some other symbols. For example:

numsign 3456

Chapter 2: How to Write Translation Tables 8

2.5 Emphasis Opcodes

These also define braille indicators, but they require more explanation. There are four sets,
for italic, bold, underline and computer braille. In each of the first three sets there are seven
opcodes, for use before the first word of a phrase, for use before the last word, for use after
the last word, for use before the first letter (or character) if emphasis starts in the middle
of a word, for use after the last letter (or character) if emphasis ends in the middle of a
word, before a single letter (or character), and to specify the length of a phrase to which
the first-word and last-word-before indicators apply. This rather elaborate set of emphasis
opcodes was devised to try to meet all contingencies. It is unlikely that a translation table
will contain all of them. The translator checks for their presence. If they are present, it
first looks to see if the single-letter indicator should be used. Then it looks at the word (or
phrase) indicators and finally at the multi-letter indicators.

The translator will apply up to two emphasis indicators to each phrase or string of
characters, depending on what the typeform parameter in its calling sequence indicates
(see Chapter 6 [Programming with liblouis], page 30).

For computer braille there are only two braille indicators, for the beginning and end
of a sequence of characters to be rendered in computer braille. Such a sequence may also
have other emphasis. The computer braille indicators are applied not only when computer
braille is indicated in the typeform parameter, but also when a sequence of characters is
determined to be computer braille because it contains a subsequence defined by the compbrl
opcode (see [compbrl], page 11) or the literal opcode (see [literal], page 22).

Here are the various emphasis opcodes.

firstwordital dots

This is the braille indicator to be placed before the first word of an italicized
phrase that is longer than the value given in the lenitalphrase opcode (see
[lenitalphrase], page 9). For example:

firstwordital 46-46 English indicator

lastworditalbefore dots

This is the braille indicator to be placed before the last word of an italicized
phrase. In addition, if firstwordital is not used, this braille indicator is
doubled and placed before the first word. Do not use lastworditalbefore

and lastworditalafter in the same table. For example:

lastworditalbefore 4-6

lastworditalafter dots

This is the braille indicator to be placed after the last word of an italicized
phrase. Do not use lastworditalbefore and lastworditalafter in the same
table. See also the lenitalphrase opcode (see [lenitalphrase], page 9) for
more information.

firstletterital dots

This is the braille indicator to be placed before the first letter (or character) if
italicization begins in the middle of a word.

lastletterital dots

This is the braille indicator to be placed after the last letter (or character) when
italicization ends in the middle of a word.

Chapter 2: How to Write Translation Tables 9

singleletterital dots

This braille indicator is used if only a single letter (or character) is italicized.

lenitalphrase number

If lastworditalbefore is used, an italicized phrase is checked to see how many
words it contains. If this number is less than or equal to the number given in
the lenitalphrase opcode, the lastworditalbefore sign is placed in front
of each word. If it is greater, the firstwordital indicator is placed before
the first word and the lastworditalbefore indicator is placed after the last
word. Note that if the firstwordital opcode is not used its indicator is made
up by doubling the dot pattern given in the lastworditalbefore entry. For
example:

lenitalphrase 4

firstwordbold dots

This is the braille indicator to be placed before the first word of a bold phrase.
For example:

firstwordbold 456-456

lastwordboldbefore dots

This is the braille indicator to be placed before the last word of a bold phrase.
In addition, if firstwordbold is not used, this braille indicator is doubled
and placed before the first word. Do not use lastwordboldbefore and
lastwordboldafter in the same table. For example:

lastwordboldbefore 456

lastwordboldafter dots

This is the braille indicator to be placed after the last word of a bold phrase.
Do not use lastwordboldbefore and lastwordboldafter in the same table.

firstletterbold dots

This is the braille indicator to be placed before the first letter (or character) if
bold emphasis begins in the middle of a word.

lastletterbold dots

This is the braille indicator to be placed after the last letter (or character) when
bold emphasis ends in the middle of a word.

singleletterbold dots

This braille indicator is used if only a single letter (or character) is in boldface.

lenboldphrase number

If lastwordboldbefore is used, a bold phrase is checked to see how many
words it contains. If this number is less than or equal to the number given in
the lenboldphrase opcode, the lastwordboldbefore sign is placed in front of
each word. If it is greater, the firstwordbold indicator is placed before the
first word and the lastwordboldbefore indicator is placed after the last word.
Note that if the firstwordbold opcode is not used its indicator is made up by
doubling the dot pattern given in the lastwordboldbefore entry.

Chapter 2: How to Write Translation Tables 10

firstwordunder dots

This is the braille indicator to be placed before the first word of an underlined
phrase.

lastwordunderbefore dots

This is the braille indicator to be placed before the last word of an underlined
phrase. In addition, if firstwordunder is not used, this braille indicator is
doubled and placed before the first word.

lastwordunderafter dots

This is the braille indicator to be placed after the last word of an underlined
phrase.

firstletterunder dots

This is the braille indicator to be placed before the first letter (or character) if
underline emphasis begins in the middle of a word.

lastletterunder dots

This is the braille indicator to be placed after the last letter (or character) when
underline emphasis ends in the middle of a word.

singleletterunder dots

This braille indicator is used if only a single letter (or character) is underlined.

lenunderphrase number

If lastwordunderbefore is used, an underlined phrase is checked to see how
many words it contains. If this number is less than or equal to the number
given in the lenunderphrase opcode, the lastwordunderbefore sign is placed
in front of each word. If it is greater, the firstwordunder indicator is placed
before the first word and the lastwordunderbefore indicator is placed after the
last word. Note that if the firstwordunder opcode is not used its indicator is
made up by doubling the dot pattern given in the lastwordunderbefore entry.

begcomp dots

This braille indicator is placed before a sequence of characters translated in com-
puter braille, whether this sequence is indicated in the typeform parameter (see
Chapter 6 [Programming with liblouis], page 30) or inferred because it contains
a subsequence specified by the compbrl opcode (see [compbrl], page 11).

endcomp dots

This braille indicator is placed after a sequence of characters translated in com-
puter braille, whether this sequence is indicated in the typeform parameter (see
Chapter 6 [Programming with liblouis], page 30) or inferred because it contains
a subsequence specified by the compbrl opcode (see [compbrl], page 11).

2.6 Special Symbol Opcodes

These opcodes define certain symbols, such as the decimal point, which require special
treatment.

decpoint character dots

This opcode defines the decimal point. The character operand must have only
one character. For example, in en-us-g1.ctb we have:

Chapter 2: How to Write Translation Tables 11

decpoint . 46

hyphen character dots

This opcode defines the hyphen, that is, the character used in compound words
such as have-nots. The back-translator uses it to determine the end of individual
words.

2.7 Special Processing Opcodes

These opcodes cause special processing to be carried out.

capsnocont

This opcode has no operands. If it is specified, words or parts of words in all
caps are not contracted. This is needed for languages such as Norwegian.

2.8 Translation Opcodes

These opcodes define the braille representations for character sequences. Each of them
defines an entry within the contraction table. These entries may be defined in any order
except, as noted below, when they define alternate representations for the same character
sequence.

Each of these opcodes specifies a condition under which the translation is legal, and each
also has a characters operand and a dots operand. The text being translated is processed
strictly from left to right, character by character, with the most eligible entry for each
position being used. If there is more than one eligible entry for a given position in the text,
then the one with the longest character string is used. If there is more than one eligible
entry for the same character string, then the one defined first is is tested for legality first.
(This is the only case in which the order of the entries makes a difference.)

The characters operand is a sequence or string of characters preceded and followed by
whitespace. Each character can be entered in the normal way, or it can be defined as a
four-digit hexadecimal number preceded by ‘\x’.

The dots operand defines the braille representation for the characters operand. It may
also be specified as an equals sign (‘=’). This means that the the default representation for
each character (see Section 2.3 [Character-Definition Opcodes], page 5) within the sequence
is to be used. Note however that the ‘=’ shortcut for dot patterns is deprecated. Dot
patterns should be written out. Otherwise back-translation may not be correct.

In what follows the word ‘characters’ means a sequence of one or more consecutive
letters between spaces and/or punctuation marks.

noback opcode ...

This is an opcode prefix, that is to say, it modifies the operation of the opcode
that follows it on the same line. noback specifies that no back-translation is to
be done using this line.

noback always ;\s; 0

nofor opcode ...

This is an opcode prefix which modifies the operation of the opcode following
it on the same line. nofor specifies that forward translation is not to use the
information on this line.

Chapter 2: How to Write Translation Tables 12

compbrl characters

If the characters are found within a block of text surrounded by whitespace the
entire block is translated according to the default braille representations defined
by the Section 2.3 [Character-Definition Opcodes], page 5, if 8-dot computer
braille is enabled or according to the dot patterns given in the comp6 opcode
(see [comp6], page 12), if 6-dot computer braille is enabled. For example:

compbrl www translate URLs in computer braille

comp6 character dots

This opcode specifies the translation of characters in 6-dot computer braille. It
is necessary because the translation of a single character may require more than
one cell. The first operand must be a character with a decimal representation
from 0 to 255 inclusive. The second operand may specify as many cells as
necessary. The opcode is somewhat of a misnomer, since any dots, not just
dots 1 through 6, can be specified. This even includes virtual dots.

nocont characters

Like compbrl, except that the string is uncontracted. prepunc opcode (see
[prepunc], page 14) and postpunc opcode (see [postpunc], page 14) rules are
applied, however. This is useful for specifying that foreign words should not be
contracted in an entire document.

replace characters {characters}

Replace the first set of characters, no matter where they appear, with the
second. Note that the second operand is NOT a dot pattern. It is also optional.
If it is omitted the character(s) in the first operand will be discarded. This is
useful for ignoring characters. It is possible that the "ignored" characters may
still affect the translation indirectly. Therefore, it is preferable to use correct
opcode (see [correct], page 20).

always characters dots

Replace the characters with the dot pattern no matter where they appear. Do
NOT use an entry such as always a 1. Use the uplow, letter, etc. character
definition opcodes instead. For example:

always world 456-2456 unconditional translation

repeated characters dots

Replace the characters with the dot pattern no matter where they appear.
Ignore any consecutive repetitions of the same character sequence. This is
useful for shortening long strings of spaces or hyphens or periods. For example:

repeated --- 36-36-36 shorten separator lines made with hyphens

repword characters dots

When characters are encountered check to see if the word before this string
matches the word after it. If so, replace characters with dots and eliminate the
second word and any word following another occurrence of characters that is
the same. This opcode is used in Malaysian braille. In this case the rule is:

repword - 123456

Chapter 2: How to Write Translation Tables 13

largesign characters dots

Replace the characters with the dot pattern no matter where they appear. In
addition, if two words defined as large signs follow each other, remove the space
between them. For example, in en-us-g2.ctb the words ‘and’ and ‘the’ are
both defined as large signs. Thus, in the phrase ‘the cat and the dog’ the space
would be deleted between ‘and’ and ‘the’, with the result ‘the cat andthe dog’.
Of course, ‘and’ and ‘the’ would be properly contracted. The term largesign

is a bit of braille jargon that pleases braille experts.

word characters dots

Replace the characters with the dot pattern if they are a word, that is, are
surrounded by whitespace and/or punctuation.

syllable characters dots

As its name indicates, this opcode defines a "syllable" which must be rep-
resented by exactly the dot patterns given. Contractions may not cross the
boundaries of this "syllable" either from left or right. The character string
defined by this opcode need not be a lexical syllable, though it usually will
be. The equal sign in the following example means that the the default repre-
sentation for each character within the sequence is to be used (see Section 2.8
[Translation Opcodes], page 11):

syllable horse = sawhorse, horseradish

nocross characters dots

Replace the characters with the dot pattern if the characters are all in one sylla-
ble (do not cross a syllable boundary). For this opcode to work, a hyphenation
table must be included. If this is not done, nocross behaves like the always

opcode (see [always], page 12). For example, if the English Grade 2 table is
being used and the appropriate hyphenation table has been included nocross

sh 146 will cause the ‘sh’ in ‘monkshood’ not to be contracted.

joinword characters dots

Replace the characters with the dot pattern if they are a word which is followed
by whitespace and a letter. In addition remove the whitespace. For example,
en-us-g2.ctb has joinword to 235. This means that if the word ‘to’ is fol-
lowed by another word the contraction is to be used and the space is to be
omitted. If these conditions are not met, the word is translated according to
any other opcodes that may apply to it.

lowword characters dots

Replace the characters with the dot pattern if they are a word preceded and fol-
lowed by whitespace. No punctuation either before or after the word is allowed.
The term lowword derives from the fact that in English these contractions are
written in the lower part of the cell. For example:

lowword were 2356

contraction characters

If you look at en-us-g2.ctb you will see that some words are actually con-
tracted into some of their own letters. A famous example among braille tran-
scribers is ‘also’, which is contracted as ‘al’. But this is also the name of a

Chapter 2: How to Write Translation Tables 14

person. To take another example, ‘altogether’ is contracted as ‘alt’, but this
is the abbreviation for the alternate key on a computer keyboard. Similarly
‘could’ is contracted into ‘cd’, but this is the abbreviation for compact disk.
To prevent confusion in such cases, the letter sign (see letsign opcode (see
[letsign], page 7)) is placed before such letter combinations when they ac-
tually are abbreviations, not contractions. The contraction opcode tells the
translator to do this.

sufword characters dots

Replace the characters with the dot pattern if they are either a word or at the
beginning of a word.

prfword characters dots

Replace the characters with the dot pattern if they are either a word or at the
end of a word.

begword characters dots

Replace the characters with the dot pattern if they are at the beginning of a
word.

begmidword characters dots

Replace the characters with the dot pattern if they are either at the beginning
or in the middle of a word.

midword characters dots

Replace the characters with the dot pattern if they are in the middle of a word.

midendword characters dots

Replace the characters with the dot pattern if they are either in the middle or
at the end of a word.

endword characters dots

Replace the characters with the dot pattern if they are at the end of a word.

partword characters dots

Replace the characters with the dot pattern if the characters are anywhere in
a word, that is, if they are proceeded or followed by a letter.

exactdots @dots

Note that the operand must begin with an at sign (‘@’). The dot pattern
following it is evaluated for validity. If it is valid, whenever an at sign followed by
this dot pattern appears in the source document it is replaced by the characters
corresponding to the dot pattern in the output. This opcode is intended for
use in liblouisutdml semantic-action files to specify exact dot patterns, as in
mathematical codes. For example:

exactdots @4-46-12356

will produce the characters with these dot patterns in the output.

prepunc characters dots

Replace the characters with the dot pattern if they are part of punctuation at
the beginning of a word.

Chapter 2: How to Write Translation Tables 15

postpunc characters dots

Replace the characters with the dot pattern if they are part of punctuation at
the end of a word.

begnum characters dots

Replace the characters with the dot pattern if they are at the beginning of a
number, that is, before all its digits. For example, in en-us-g1.ctb we have
begnum # 4.

midnum characters dots

Replace the characters with the dot pattern if they are in the middle of a
number. For example, en-us-g1.ctb has midnum . 46. This is because the
decimal point has a different dot pattern than the period.

endnum characters dots

Replace the characters with the dot pattern if they are at the end of a number.
For example en-us-g1.ctb has endnum th 1456. This handles things like ‘4th’.
A letter sign is NOT inserted.

joinnum characters dots

Replace the characters with the dot pattern. In addition, if whitespace and a
number follows omit the whitespace. This opcode can be used to join currency
symbols to numbers for example:

joinnum \x20AC 15 (EURO SIGN)

joinnum \x0024 145 (DOLLAR SIGN)

joinnum \x00A3 1234 (POUND SIGN)

joinnum \x00A5 13456 (YEN SIGN)

2.9 Character-Class Opcodes

These opcodes define and use character classes. A character class associates a set of char-
acters with a name. The name then refers to any character within the class. A character
may belong to more than one class.

The basic character classes correspond to the character definition opcodes, with the
exception of the uplow opcode (see [uplow], page 5), which defines characters belonging to
the two classes uppercase and lowercase. These classes are:

space Whitespace characters such as blank and tab

digit Numeric characters

letter Both uppercase and lowercase alphabetic characters

lowercase

Lowercase alphabetic characters

uppercase

Uppercase alphabetic characters

punctuation

Punctuation marks

sign Signs such as percent (‘%’)

Chapter 2: How to Write Translation Tables 16

math Mathematical symbols

litdigit Literary digit

undefined

Not properly defined

The opcodes which define and use character classes are shown below. For examples see
fr-abrege.ctb.

class name characters

Define a new character class. The characters operand must be specified as a
string. A character class may not be used until it has been defined.

after class opcode ...

The specified opcode is further constrained in that the matched character se-
quence must be immediately preceded by a character belonging to the specified
class. If this opcode is used more than once on the same line then the union of
the characters in all the classes is used.

before class opcode ...

The specified opcode is further constrained in that the matched character se-
quence must be immediately followed by a character belonging to the specified
class. If this opcode is used more than once on the same line then the union of
the characters in all the classes is used.

2.10 Swap Opcodes

The swap opcodes are needed to tell the context opcode (see [context], page 17), the
correct opcode (see [correct], page 20) and multipass opcodes which dot patterns to
swap for which characters. There are three, swapcd, swapdd and swapcc. The first swaps
dot patterns for characters. The second swaps dot patterns for dot patterns and the third
swaps characters for characters. The first is used in the context opcode and the second
is used in the multipass opcodes. Dot patterns are separated by commas and may contain
more than one cell.

swapcd name characters dots, dots, dots, ...

See above paragraph for explanation. For example:

swapcd dropped 0123456789 356,2,23,...

swapdd name dots, dots, dots ... dotpattern1, dotpattern2, dotpattern3, ...

The swapdd opcode defines substitutions for the multipass opcodes. In the
second operand the dot patterns must be single cells, but in the third operand
multi-cell dot patterns are allowed. This is because multi-cell patterns in the
second operand would lead to ambiguities.

swapcc name characters characters

The swapcc opcode swaps characters in its second operand for characters in the
corresponding places in its third operand. It is intended for use with correct

opcodes and can solve problems such as formatting phone numbers.

Chapter 2: How to Write Translation Tables 17

2.11 The Context and Multipass Opcodes

The context and multipass opcodes (pass2, pass3 and pass4) provide translation capabil-
ities beyond those of the basic translation opcodes (see Section 2.8 [Translation Opcodes],
page 11) discussed previously. The multipass opcodes cause additional passes to be made
over the string to be translated. The number after the word pass indicates in which pass
the entry is to be applied. If no multipass opcodes are given, only the first translation pass
is made. The context opcode is basically a multipass opcode for the first pass. It differs
slightly from the multipass opcodes per se. The format of all these opcodes is opcode test

action. The specific opcodes are invoked as follows:

context test action

pass2 test action

pass3 test action

pass4 test action

The test and action operands have suboperands. Each suboperand begins with a non-
alphanumeric character and ends when another non-alphanumeric character is encountered.
The suboperands and their initial characters are as follows.

" (double quote)

a string of characters. This string must be terminated by another double quote.
It may contain any characters. If a double quote is needed within the string,
it must be preceded by a backslash (‘\’). If a space is needed, it must be
represented by the escape sequence \s. This suboperand is valid only in the
test part of the context opcode.

@ (at sign)

a sequence of dot patterns. Cells are separated by hyphens as usual. This
suboperand is not valid in the test part of the context and correct opcodes.

‘ (accent mark)

If this is the beginning of the string being translated this suboperand is true.
It is valid only in the test part and must be the first thing in this operand.

~ (tilde) If this is the end of the string being translated this suboperand is true. It is
valid only in the test part and must be the last thing in this operand.

$ (dollar sign)

a string of attributes, such as ‘d’ for digit, ‘l’ for letter, etc. More than one
attribute can be given. If you wish to check characters with any attribute, use
the letter ‘a’. Input characters are checked to see if they have at least one of
the attributes. The attribute string can be followed by numbers specifying how
many characters are to be checked. If no numbers are given, 1 is assumed. If
two numbers separated by a hyphen are given, the input is checked to make
sure that at least the first number of characters with the attributes are present,
but no more than the second number. If only one number is present, then
exactly that many characters must have the attributes. A period instead of the
numbers indicates an indefinite number of characters (for technical reasons the
number of characters that are actually matched is limited to 65535).

This suboperand is valid in all test parts but not in action parts. For the
characters which can be used in attribute strings, see the following table.

Chapter 2: How to Write Translation Tables 18

! (exclamation point)

reverses the logical meaning of the suboperand which follows. For example, !$d
is true only if the character is NOT a digit. This suboperand is valid in test
parts only.

% (percent sign)

the name of a class defined by the class opcode (see [class], page 16) or
the name of a swap set defined by the swap opcodes (see Section 2.10 [Swap
Opcodes], page 16). Names may contain only letters. The letters may be upper
or lower-case. The case matters. Class names may be used in test parts only.
Swap names are valid everywhere.

{ (left brace)

Name: the name of a grouping pair. The left brace indicates that the first (or
left) member of the pair is to be used in matching. If this is between replacement
brackets it must be the only item. This is also valid in the action part.

} (right brace)

Name: the name of a grouping pair. The right brace indicates that the second
(or right) member is to be used in matching. See the remarks on the left brace
immediately above.

/ (slash) Search the input for the expression following the slash and return true if found.
This can be used to set a variable.

_ (underscore)

Move backward. If a number follows, move backward that number of characters.
The program never moves backward beyond the beginning of the input string.
This suboperand is valid only in test parts.

[(left bracket)

start replacement here. This suboperand must always be paired with a right
bracket and is valid only in test parts. Multiple pairs of square brackets in a
single expression are not allowed.

] (right bracket)

end replacement here. This suboperand must always be paired with a left
bracket and is valid only in test parts.

(number sign or crosshatch)

test or set a variable. Variables are referred to by numbers 1 to 50, for example,
#1, #2, #25. Variables may be set by one context or multipass opcode and
tested by another. Thus, an operation that occurs at one place in a translation
can tell an operation that occurs later about itself. This feature will be used in
math translation, and it may also help to alleviate the need for new opcodes.
This suboperand is valid everywhere.

Variables are set in the action part. To set a variable use an expression like #1=1,
#2=5, etc. Variables are also incremented and decremented in the action part
with expressions like #1+, #3-, etc. These operators increment or decrement
the variable by 1.

Variables are tested in the test part with expressions like #1=2, #3<4, #5>6, etc.

Chapter 2: How to Write Translation Tables 19

* (asterisk)

Copy the characters or dot patterns in the input within the replacement brackets
into the output and discard anything else that may match. This feature is used,
for example, for handling numeric subscripts in Nemeth. This suboperand is
valid only in action parts.

? (question mark)

Valid only in the action part. The characters to be replaced are simply ignored.
That is, they are replaced with nothing. If either member of a grouping pair is
in the replace brackets the other member at the same level is also removed.

The characters which can be used in attribute strings are as follows:

a any attribute

d digit

D literary digit

l letter

m math

p punctuation

S sign

s space

U uppercase

u lowercase

w first user-defined class

x second user-defined class

y third user-defined class

z fourth user-defined class

The following illustrates the algorithm how text is evaluated with multipass expressions:

Loop over context, pass2, pass3 and pass4 and do the following for each pass:

a. Match the text following the cursor against all expressions in the current pass

b. If there is no match: shift the cursor one position to the right and continue the loop

c. If there is a match: choose the longest match

d. Do the replacement (everything between square brackets)

e. Place the cursor after the replaced text

f. continue loop

Chapter 2: How to Write Translation Tables 20

2.12 The correct Opcode

correct test action

Because some input (such as that from an OCR program) may contain system-
atic errors, it is sometimes advantageous to use a pre-translation pass to remove
them. The errors and their corrections are specified by the correct opcode. If
there are no correct opcodes in a table, the pre-translation pass is not used.
The format of the correct opcode is very similar to that of the context opcode
(see [context], page 17). The only difference is that in the action part strings
may be used and dot patterns may not be used. Some examples of correct
opcode entries are:

correct "\\" ? Eliminate backslashes

correct "cornf" "comf" fix a common "scano"

correct "cornm" "comm"

correct "cornp" "comp"

correct "*" ? Get rid of stray asterisks

correct "|" ? ditto for vertical bars

correct "\s?" "?" drop space before question mark

2.13 Miscellaneous Opcodes

include filename

Read the file indicated by filename and incorporate or include its entries into
the table. Included files can include other files, which can include other files, etc.
For an example, see what files are included by the entry include en-us-g1.ctb
in the table en-us-g2.ctb. If the included file is not in the same directory as
the main table, use a full path name for filename.

locale characters

Not implemented, but recognized and ignored for backward compatibility.

undefined dots

If this opcode is used in a table any characters which have not been defined in
the table but are encountered in the text will be replaced by the dot pattern.
If this opcode is not used, any undefined characters are replaced by ’\xhhhh’,
where the h’s are hexadecimal digits.

display character dots

Associates dot patterns with the characters which will be sent to a braille
embosser, display or screen font. The character must be in the range 0-255 and
the dots must specify a single cell. Here are some examples:

When the character a is sent to the embosser or display,

it will produce a dot 1.

display a 1

When the character L is sent to the display or embosser

it will produce dots 1-2-3.

display L 123

The display opcode is optional. It is used when the embosser or display has a
different mapping of characters to dot patterns than that given in Section 2.3

Chapter 2: How to Write Translation Tables 21

[Character-Definition Opcodes], page 5. If used, display entries must proceed
character-definition entries.

A possible use case would be to define display opcodes so that the result is
Unicode braille for use on a display and a second set of display opcodes (in a
different file) to produce plain ASCII braille for use with an embosser.

multind dots opcode opcode ...

The multind opcode tells the back-translator that a sequence of braille cells
represents more than one braille indicator. For example, in en-us-g1.ctb we
have multind 56-6 letsign capsign. The back-translator can generally han-
dle single braille indicators, but it cannot apply them when they immediately
follow each other. It recognizes the letter sign if it is followed by a letter and
takes appropriate action. It also recognizes the capital sign if it is followed by
a letter. But when there is a letter sign followed by a capital sign it fails to
recognize the letter sign unless the sequence has been defined with multind. A
multind entry may not contain a comment because liblouis would attempt to
interpret it as an opcode.

2.14 Deprecated Opcodes

The following opcodes are an early attempt to handle emphasis. They have been deprecated
by more specific opcodes, but are kept for backward compatibility.

italsign dots

This opcode is deprecated. Use the lastworditalbefore opcode (see
[lastworditalbefore], page 8) instead.

begital dots

This opcode is deprecated. Use the firstletterital opcode (see
[firstletterital], page 8) instead.

endital dots

This opcode is deprecated. Use the lastletterital opcode (see
[lastletterital], page 8) instead.

boldsign dots

This opcode is deprecated. Use the lastwordboldbefore opcode (see
[lastwordboldbefore], page 9) instead.

begbold dots

This opcode is deprecated. Use the firstletterbold opcode (see
[firstletterbold], page 9) instead.

endbold dots

This opcode is deprecated. Use the lastletterbold opcode (see
[lastletterbold], page 9) instead.

undersign dots

This opcode is deprecated. Use the lastwordunderbefore opcode (see
[lastwordunderbefore], page 10) instead.

Chapter 2: How to Write Translation Tables 22

begunder dots

This opcode is deprecated. Use the firstletterunder opcode (see
[firstletterunder], page 10) instead.

endunder dots

This opcode is deprecated. Use the lastletterunder opcode (see
[lastletterunder], page 10) instead.

literal characters

This opcode is deprecated. Use the compbrl opcode (see [compbrl], page 11)
instead.

23

3 Notes on Back-Translation

Back-translation is carried out by the function lou_backTranslateString. Its calling se-
quence is described in Chapter 6 [Programming with liblouis], page 30. Tables containing no
context opcode (see [context], page 17), correct opcode (see [correct], page 20) or mul-
tipass opcodes can be used for both forward and backward translation. If these opcodes are
needed different tables will be required. lou_backTranslateString first performs pass4,
if present, then pass3, then pass2, then the backtranslation, then corrections. Note that
this is exactly the inverse of forward translation.

24

4 Testing Translation Tables interactively

A number of test programs are provided as part of the liblouis package. They are intended
for testing liblouis and for debugging tables. None of them is suitable for braille transcrip-
tion. An application that can be used for transcription is file2brl, which is part of the
liblouisutdml package (see Section “Introduction” in Liblouisutdml User’s and Program-
mer’s Manual). The source code of the test programs can be studied to learn how to use
the liblouis library and they can be used to perform the following functions.

All of these programs recognize the --help and --version options.

--help

-h Print a usage message listing all available options, then exit successfully.

--version

-v Print the version number, then exit successfully.

4.1 lou debug

The lou_debug tool is intended for debugging liblouis translation tables. The command
line for lou_debug is:

lou_debug [OPTIONS] TABLE[,TABLE,...]

The command line options that are accepted by lou_debug are described in [common
options], page 24.

The table (or comma-separated list of tables) is compiled. If no errors are found a brief
command summary is printed, then the prompt ‘Command:’. You can then input one of the
command letters and get output, as described below.

Most of the commands print information in the various arrays of TranslationTableHeader.
Since these arrays are pointers to chains of hashed items, the commands first print the
hash number, then the first item, then the next item chained to it, and so on. After each
item there is a prompt indicated by ‘=>’. You can then press enter (RET) to see the next
item in the chain or the first item in the next chain. Or you can press h (for next-(h)ash)
to skip to the next hash chain. You can also press e to exit the command and go back to
the ‘command:’ prompt.

h Brings up a screen of somewhat more extensive help.

f Display the first forward-translation rule in the first non-empty hash bucket.
The number of the bucket is displayed at the beginning of the chain. Each rule
is identified by the word ‘Rule:’. The fields are displayed by phrases consisting
of the name of the field, an equal sign, and its value. The before and after fields
are displayed only if they are nonzero. Special opcodes such as the correct

opcode (see [correct], page 20) and the multipass opcodes are shown with the
code that instructs the virtual machine that interprets them. If you want to see
only the rules for a particular character string you can type p at the ‘command:’
prompt. This will take you to the ‘particular:’ prompt, where you can press
f and then type in the string. The whole hash chain containing the string will
be displayed.

Chapter 4: Testing Translation Tables interactively 25

b Display back-translation rules. This display is very similar to that of forward
translation rules except that the dot pattern is displayed before the character
string.

c Display character definitions, again within their hash chains.

d Displays single-cell dot definitions. If a character-definition opcode gives a
multi-cell dot pattern, it is displayed among the back-translation rules.

C Display the character-to-dots map. This is set up by the character-definition
opcodes and can also be influenced by the display opcode (see [display],
page 20).

D Display the dot to character map, which shows which single-cell dot patterns
map to which characters.

z Show the multi-cell dot patterns which have been assigned to the characters
from 0 to 255 to comply with computer braille codes such as a 6-dot code.
Note that the character-definition opcodes should use 8-dot computer braille.

p Bring up a secondary (‘particular:’) prompt from which you can examine
particular character strings, dot patterns, etc. The commands (given in its own
command summary) are very similar to those of the main ‘command:’ prompt,
but you can type a character string or dot pattern. They include h, f, b, c, d,
C, D, z and x (to exit this prompt), but not p, i and m.

i Show braille indicators. This shows the dot patterns for various opcodes such
as the capsign opcode (see [capsign], page 7) and the numsign opcode (see
[numsign], page 7). It also shows emphasis dot patterns, such as those for the
italword, the firstletterbold opcode (see [firstletterbold], page 9), etc.
If a given opcode has not been used nothing is printed for it.

m Display various miscellaneous information about the table, such as the number
of passes, whether certain opcodes have been used, and whether there is a
hyphenation table.

q Exit the program.

4.2 lou trace

When working on translation tables it is sometimes useful to determine what rules were
applied when translating a string. lou_trace helps with exactly that. It list all the the
applied rules for a given translation table and an input string.

lou_trace [OPTIONS] TABLE[,TABLE,...]

lou_trace accepts all the standard options (see [common options], page 24). Once
started you can type an input string followed by RET. lou_trace will print the braille
translation followed by list of rules that were applied to produce the translation. A possible
invocation is listed in the following example:

$ lou_trace tables/en-us-g2.ctb

the u.s. postal service

! u4s4 po/al s}vice

1. largesign the 2346

Chapter 4: Testing Translation Tables interactively 26

2. repeated 0

3. lowercase u 136

4. punctuation . 46

5. context _$l["."]$l @256

6. lowercase s 234

7. postpunc . 256

8. repeated 0

9. begword post 1234-135-34

10. largesign a 1

11. lowercase l 123

12. repeated 0

13. lowercase s 234

14. always er 12456

15. lowercase v 1236

16. lowercase i 24

17. lowercase c 14

18. lowercase e 15

19. pass2 $s1-10 @0

20. pass2 $s1-10 @0

21. pass2 $s1-10 @0

4.3 lou checktable

To use this program type the following:

lou_checktable [OPTIONS] TABLE

Aside from the standard options (see [common options], page 24) lou_checktable also
accepts the following options:

--quiet

-q Do not write to standard error if there are no errors.

If the table contains errors, appropriate messages will be displayed. If there are no errors
the message ‘no errors found.’ will be shown.

4.4 lou allround

This program tests every capability of the liblouis library. It is completely interactive.
Invoke it as follows:

lou_allround [OPTIONS]

The command line options that are accepted by lou_allround are described in [common
options], page 24.

You will see a few lines telling you how to use the program. Pressing one of the letters
in parentheses and then enter will take you to a message asking for more information or
for the answer to a yes/no question. Typing the letter ‘r’ and then RET will take you to a
screen where you can enter a line to be processed by the library and then view the results.

Chapter 4: Testing Translation Tables interactively 27

4.5 lou translate

This program translates whatever is on the standard input unit and prints it on the standard
output unit. It is intended for large-scale testing of the accuracy of translation and back-
translation. The command line for lou_translate is:

lou_translate [OPTION] TABLE[,TABLE,...]

Aside from the standard options (see [common options], page 24) this program also
accepts the following options:

--forward

-f Do a forward translation.

--backward

-b Do a backward translation.

To use it to translate or back-translate a file use a line like

lou_translate --forward en-us-g2.ctb <liblouis.txt >testtrans

4.6 lou checkhyphens

This program checks the accuracy of hyphenation in Braille translation for both translated
and untranslated words. It is completely interactive. Invoke it as follows:

lou_checkhyphens [OPTIONS]

The command line options that are accepted by lou_checkhyphens are described in
[common options], page 24.

You will see a few lines telling you how to use the program.

28

5 Automated Testing of Translation Tables

There are a number of automated tests for liblouis and they are proving to be of tremendous
value. When changing the code the developers can run the tests to see if anything broke.

For testing the translation tables there are basically two approaches: there are the har-
ness tests and the doctests. They were created at roughly the same time using different
technologies, have influenced each other and have gone through improvements and technol-
ogy changes. For now they are both based on Python so you need to have that installed.
The philosophies of the two are slightly different:

Harness tests
The harness tests are data driven, i.e. you give the test data, i.e. a string to
translate and the expected output. The data is in a standard format, i.e. json.
They work with both Python2 and Python3, however since the format is json
it is perceivable that somebody would write some C code which takes the data
in the harness file and runs it through liblouis so they could also run without
Python and without ucs4.

Doctests The doctests on the other hand are based on a technology used in Python where
you define your tests as if you were sitting at a terminal session with a Python
interpreter. So the tests look like you typed a command and got some output,
e.g.

>>> translate([’table.ctb’], "Hello", mode=compbrlLeftCursor)

("HELLO", [0,1,2,3], [0,1,2,3], 0)

There is a convenience wrapper which hides away much of the complexity of
above example so you can write stuff like

>>> t.braille(’the cat sat on the mat’)

u’! cat sat on ! mat’

But essentially you are writing code, so the doctests allow you to do more
flexible tests that are much closer to the raw iron. For technical reasons the
doctests will probably only ever work in either Python2 or Python3 but not
both and they will never run from C.

To sum it up, the recommendation is that for normal table testing you should use the
test harness. It has a lot of momentum and the format is a standard. If you want to be
closer to the raw Python API of liblouis, if you want to test some more intricate scenarios
(involving inpos, modes, etc) then the doctests are for you.

5.1 Translation Table Test Harness

Each harness file is a simple UTF8 encoded json file, which has two entries.

tables A list containing table names, which the tests should be run against. This is
usually just one table, but for some situations more than one table is required.

tests A list of sections of tests, which should be processed independently. Each test
section is a dictionary of two items.

Chapter 5: Automated Testing of Translation Tables 29

flags The flags that apply for all the test cases in this section. For example, they
could all be forward translation tests, or they should all be run as computer
braille tests.

data A list of test cases, each one containing the specific test data needed to perform
a test.

These are the valid fields for the flags section:

comment A field describing the reason for the tests, the transformation rule or any useful
info that might be needed in case the test breaks (optional).

cursorPos

The position of the cursor within the given text (optional). Useful when simu-
lating screenreader interaction, to debug contraction and cursor behavior.

mode The liblouis translation mode that should be used for this test (optional). If
not defined defaults to 0.

outputUniBrl

For a forward translation test, the output should be in Unicode braille. For a
backward translation test, the input is in Unicode braille.

testmode The optional testmode field can have three values: "translate" (default if un-
declared), "backtranslate" or "hyphenate". Declares what tests should be per-
formed on the test data.

Each test case has the following entries:

input The Unicode text to be tested (required).

output The expected braille output (required). The dots should be encoded in the
liblouis ASCII-braille like encoding.

brlCursorPos

The expected position of the braille cursor in the braille output (optional). Use-
ful when simulating screenreader interaction, to debug contraction and cursor
behavior.

Variables defined in the flags section can be overridden by individual test cases, but
if several tests need the same options, they should ideally be split into their own section,
complete with their own flags and data.

For examples please see *_harness.txt in the harness directory in the source distribu-
tion.

5.2 Translation Table Doctests

For examples on how to create doctests please see *_test.txt in the doctest directory in
the source distribution.

30

6 Programming with liblouis

6.1 License

Liblouis may contain code borrowed from the Linux screen reader BRLTTY, Copyright c©
1999-2006 by the BRLTTY Team.

Copyright c© 2004-2007 ViewPlus Technologies, Inc. www.viewplus.com.

Copyright c© 2007,2009 Abilitiessoft, Inc. www.abilitiessoft.com.

Liblouis is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

Liblouis is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with
Liblouis. If not, see http://www.gnu.org/licenses/.

6.2 Overview

You use the liblouis library by calling the following functions, lou_translateString, lou_
backTranslateString, lou_registerLogCallback, lou_setLogLevel, lou_logFile,
lou_logPrint, lou_logEnd, lou_getTable, lou_translate, lou_backTranslate,
lou_hyphenate, lou_charToDots, lou_dotsToChar, lou_compileString, lou_

readCharFromFile, lou_version and lou_free. These are described below. The header
file, liblouis.h, also contains brief descriptions. Liblouis is written in straight C. It has
four code modules, compileTranslationTable.c, logging.c, lou_translateString.c

and lou_backTranslateString.c. In addition, there are two header files, liblouis.h,
which defines the API, and louis.h, used only internally and by liblouisutdml. The latter
includes liblouis.h.

Persons who wish to use liblouis from Python may want to skip ahead to Section 6.23
[Python bindings], page 38.

compileTranslationTable.c keeps track of all translation tables which an application
has used. It is called by the translation, hyphenation and checking functions when they start.
If a table has not yet been compiled compileTranslationTable.c checks it for correctness
and compiles it into an efficient internal representation. The main entry point is lou_

getTable. Since it is the module that keeps track of memory usage, it also contains the lou_
free function. In addition, it contains the lou_registerLogCallback, lou_setLogLevel,
lou_logFile, lou_logPrint and lou_logEnd functions, plus some utility functions which
are used by the other modules.

By default, liblouis handles all characters internally as 16-bit unsigned integers. It can
be compiled for 32-bit characters as explained below. The meanings of these integers are
not hard-coded. Rather they are defined by the character-definition opcodes. However,
the standard printable characters, from decimal 32 to 126 are recognized for the purpose
of processing the opcodes. Hence, the following definition is included in liblouis.h. It is
correct for computers with at least 32-bit processors.

#define widechar unsigned short int

www.viewplus.com
www.abilitiessoft.com
http://www.gnu.org/licenses/

Chapter 6: Programming with liblouis 31

To make liblouis handle 32-bit Unicode simply remove the word short in the above
define. This will cause the translate and back-translate functions to expect input in 32-bit
form and to deliver their output in this form. The input to the compiler (tables) is unaffected
except that two new escape sequences for 20-bit and 32-bit characters are recognized.

Here are the definitions of the eleven liblouis functions and their parameters. They are
given in terms of 16-bit Unicode. If liblouis has been compiled for 32-bit Unicode simply
read 32 instead of 16.

6.3 Data structure of liblouis tables

The data structure TranslationTableHeader is defined by a typedef statement in
louis.h. To find the beginning, search for the word ‘header’. As its name implies, this is
actually the table header. Data are placed in the ruleArea array, which is the last item
defined in this structure. This array is declared with a length of 1 and is expanded as
needed. The table header consists mostly of arrays of pointers of size HASHNUM. These
pointers are actually offsets into ruleArea and point to chains of items which have been
placed in the same hash bucket by a simple hashing algorithm. HASHNUM should be a prime
and is currently 1123. The structure of the table was chosen to optimize speed rather than
memory usage.

The first part of the table contains miscellaneous information, such as the number of
passes and whether various opcodes have been used. It also contains the amount of memory
allocated to the table and the amount actually used.

The next section contains pointers to various braille indicators and begins with
capitalSign. The rules pointed to contain the dot pattern for the indicator and an
opcode which is used by the back-translator but does not appear in the list of opcodes.
The braille indicators also include various kinds of emphasis, such as italic and bold and
information about the length of emphasized phrases. The latter is contained directly in
the table item instead of in a rule.

After the braille indicators comes information about when a letter sign should be used.

Next is an array of size HASHNUM which points to character definitions. These are created
by the character-definition opcodes.

Following this is a similar array pointing to definitions of single-cell dot patterns. This
is also created from the character-definition opcodes. If a character definition contains a
multi-cell dot pattern this is compiled into ordinary forward and backward rules. If such a
multi-cell dot pattern contains a single cell which has not previously been defined that cell
is placed in this array, but is given the attribute space.

Next come arrays that map characters to single-cell dot patterns and dots to characters.
These are created from both character-definition opcodes and display opcodes.

Next is an array of size 256 which maps characters in this range to dot patterns which
may consist of multiple cells. It is used, for example, to map ‘{’ to dots 456-246. These
mappings are created by the compdots or the comp6 opcode (see [comp6], page 12).

Next are two small arrays that held pointers to chains of rules produced by the swapcd
opcode (see [swapcd], page 16) and the swapdd opcode (see [swapdd], page 16) and by some
multipass, context and correct opcodes.

Chapter 6: Programming with liblouis 32

Now we get to an array of size HASHNUM which points to chains of rules for forward
translation.

Following this is a similar array for back-translation.

Finally is the ruleArea, an array of variable size to which various structures are mapped
and to which almost everything else points.

6.4 lou version

char *lou_version ()

This function returns a pointer to a character string containing the version of liblouis,
plus other information, such as the release date and perhaps notable changes.

6.5 lou translateString

int lou_translateString (

const char * tableList,

const widechar * inbuf,

int *inlen,

widechar *outbuf,

int *outlen,

char *typeform,

char *spacing,

int mode);

This function takes a string of 16-bit Unicode characters in inbuf and translates it into
a string of 16-bit characters in outbuf. Each 16-bit character produces a particular dot
pattern in one braille cell when sent to an embosser or braille display or to a screen type
font. Which 16-bit character represents which dot pattern is indicated by the character-
definition and display opcodes in the translation table.

The tableList parameter points to a list of translation tables separated by commas. If
only one table is given, no comma should be used after it. It is these tables which control
just how the translation is made, whether in Grade 2, Grade 1, or something else.

liblouis knows where to find all the tables that have been distributed with it. So you can
just give a table name such as en-us-g2.ctb and liblouis will load it. You can also give
a table name which includes a path. If this is the first table in a list, all the tables in the
list must be on the same path. You can specify a path on which liblouis will look for table
names by setting the environment variable LOUIS_TABLEPATH. This environment variable
can contain one or more paths separated by commas. On receiving a table name liblouis
first checks to see if it can be found on any of these paths. If not, it then checks to see if
it can be found in the current directory, or, if the first (or only) name in a table list, if it
contains a path name, can be found on that path. If not, it checks to see if it can be found
on the path where the distributed tables have been installed. If a table has already been
loaded and compiled this path-checking is skipped.

The tables in a list are all compiled into the same internal table. The list is then regarded
as the name of this table. As explained in Chapter 2 [How to Write Translation Tables],
page 2, each table is a file which may be plain text, big-endian Unicode or little-endian
Unicode. A table (or list of tables) is compiled into an internal representation the first time

Chapter 6: Programming with liblouis 33

it is used. Liblouis keeps track of which tables have been compiled. For this reason, it
is essential to call the lou_free function at the end of your application to avoid memory
leaks. Do NOT call lou_free after each translation. This will force liblouis to compile the
translation tables each time they are used, leading to great inefficiency.

Note that both the *inlen and *outlen parameters are pointers to integers. When the
function is called, these integers contain the maximum input and output lengths, respec-
tively. When it returns, they are set to the actual lengths used.

The typeform parameter is used to indicate italic type, boldface type, computer braille,
etc. It is a string of characters with the same length as the input buffer pointed to by
*inbuf. However, it is used to pass back character-by-character results, so enough space
must be provided to match the *outlen parameter. Each character indicates the typeform
of the corresponding character in the input buffer. The values are as follows: 0 plain-text;
1 italic; 2 bold; 4 underline; 8 computer braille. These values can be added for multiple
emphasis. If this parameter is NULL, no checking for type forms is done. In addition, if this
parameter is not NULL, it is set on return to have an 8 at every position corresponding to a
character in outbuf which was defined to have a dot representation containing dot 7, dot 8
or both, and to 0 otherwise.

The spacing parameter is used to indicate differences in spacing between the input
string and the translated output string. It is also of the same length as the string pointed
to by *inbuf. If this parameter is NULL, no spacing information is computed.

The mode parameter specifies how the translation should be done. The valid values of
mode are listed in liblouis.h. They are all powers of 2, so that a combined mode can be
specified by adding up different values.

The function returns 1 if no errors were encountered and 0 if a complete translation
could not be done.

6.6 lou translate

int lou_translate (

const char * tableList,

const widechar * const inbuf,

int *inlen,

widechar * outbuf,

int *outlen,

char *typeform,

char *spacing,

int *outputPos,

int *inputPos,

int *cursorPos,

int mode);

This function adds the parameters outputPos, inputPos and cursorPos, to facilitate use
in screen reader programs. The outputPos parameter must point to an array of integers
with at least inlen elements. On return, this array will contain the position in outbuf

corresponding to each input position. Similarly, inputPos must point to an array of integers
of at least outlen elements. On return, this array will contain the position in inbuf

corresponding to each position in outbuf. cursorPos must point to an integer containing

Chapter 6: Programming with liblouis 34

the position of the cursor in the input. On return, it will contain the cursor position in the
output. Any parameter after outlen may be NULL. In this case, the actions corresponding
to it will not be carried out. The mode parameter, however, must be present and must be an
integer, not a pointer to an integer. If the compbrlAtCursor bit is set in the mode parameter
the space-bounded characters containing the cursor will be translated in computer braille.
If the compbrlLeftCursor bit is set only the characters to the left of the cursor will be in
computer braille. This bit overrides compbrlAtCursor. When the dotsIO bit is set, during
translation, produce output as dot patterns. During back-translation accept input as dot
patterns. Note that the produced dot patterns are affected if you have any display opcode
(see [display], page 20) defined in any of your tables. The ucBrl (Unicode Braille) bit is
used by lou_charToDots and lou_translate. It causes the dot patterns to be Unicode
Braille rather than the liblouis representation. Note that you will not notice any change
when setting ucBrl unless dotsIO is also set. lou_dotsToChar and lou_backTranslate

recognize Unicode braille automatically.

The otherTrans mode needs special description. If it is set liblouis will attempt to call
a wrapper for another translator. These other translators are usually for Asian languages.
The calling sequence is the same as for liblouis itself except that the trantab parameter
gives the name of the other translator, possibly abbreviated, followed by a colon, followed by
whatever other information the other translator needs. This is specific for each translator.
If no such information is needed the colon should be omitted. The result of calling either
the translate or back-translate functions with this mode bit set will be the same as calling
without it set. That is, the wrapper for the other translator simulates a call to liblouis.
Note that the wrappers are not implemented at this time. Setting this mode bit will result
in failure (return value of 0).

6.7 lou backTranslateString

int lou_backTranslateString (

const char * tableList,

const widechar * inbuf,

int *inlen,

widechar *outbuf,

int *outlen,

char *typeform,

char *spacing,

int mode);

This is exactly the opposite of lou_translateString. inbuf is a string of 16-bit Unicode
characters representing braille. outbuf will contain a string of 16–bit Unicode characters.
typeform will indicate any emphasis found in the input string, while spacing will indicate
any differences in spacing between the input and output strings. The typeform and spacing

parameters may be NULL if this information is not needed. mode again specifies how the
back-translation should be done.

6.8 lou backTranslate

int lou_backTranslate (

const char * tableList,

Chapter 6: Programming with liblouis 35

const widechar * inbufx,

int *inlen,

widechar * outbuf,

int *outlen,

char *typeform,

char *spacing,

int *outputPos,

int *inputPos,

int *cursorPos,

int mode);

This function is exactly the inverse of lou_translate.

6.9 lou hyphenate

int lou_hyphenate (

const char *tableList,

const widechar *inbuf,

int inlen,

char *hyphens,

int mode);

This function looks at the characters in inbuf and if it finds a sequence of letters at-
tempts to hyphenate it as a word. Note that lou hyphenate operates on single words only,
and spaces or punctuation marks between letters are not allowed. Leading and trailing
punctuation marks are ignored. The table named by the tableList parameter must con-
tain a hyphenation table. If it does not, the function does nothing. inlen is the length of
the character string in inbuf. hyphens is an array of characters and must be of size inlen +

1 (to account for the NULL terminator). If hyphenation is successful it will have a 1 at the
beginning of each syllable and a 0 elsewhere. If the mode parameter is 0 inbuf is assumed
to contain untranslated characters. Any nonzero value means that inbuf contains a trans-
lation. In this case, it is back-translated, hyphenation is performed, and it is re-translated
so that the hyphens can be placed correctly. The lou_translate and lou_backTranslate

functions are used in this process. lou_hyphenate returns 1 if hyphenation was successful
and 0 otherwise. In the latter case, the contents of the hyphens parameter are undefined.
This function was provided for use in liblouisutdml.

6.10 lou compileString

int lou_compileString (const char *tableList, const char *inString)

This function enables you to compile a table entry on the fly at run-time. The new entry
is added to tableList and remains in force until lou_free is called. If tableList has not
previously been loaded it is loaded and compiled. inString contains the table entry to be
added. It may be anything valid. Error messages will be produced if it is invalid. The
function returns 1 on success and 0 on failure.

6.11 lou dotsToChar

int lou_dotsToChar (const char *tableList, const widechar *inbuf, widechar

Chapter 6: Programming with liblouis 36

*outbuf, int length, int)

This function takes a widechar string in inbuf consisting of dot patterns and converts
it to a widechar string in outbuf consisting of characters according to the specifications in
tableList. length is the length of both inbuf and outbuf. The dot patterns in inbuf

can be in either liblouis format or Unicode braille. The function returns 1 on success and
0 on failure.

6.12 lou charToDots

int lou_charToDots (const char *tableList, const widechar *inbuf, widechar

*outbuf, int length, int mode)

This function is the inverse of lou_dotsToChar. It takes a widechar string in inbuf

consisting of characters and converts it to a widechar string in outbuf consisting of dot
patterns according to the specifications in tableList. length is the length of both inbuf

and outbuf. The dot patterns in outbufbuf are in liblouis format if the mode bit ucBrl
is not set and in Unicode format if it is set. The function returns 1 on success and 0 on
failure.

6.13 lou registerLogCallback

typedef void (*logcallback)(int level, const char *message);

void lou_registerLogCallback(logcallback callback);

This function can be used to register a custom logging callback. The callback must take
a single argument, the message string. By default log messages are printed to stderr, or
if a filename was specified with lou_logFile then messages are logged to that file. lou_

registerLogCallback overrides the default callback. Passing NULL resets to the default
callback.

6.14 lou setLogLevel

typedef enum

{

LOG_ALL = -2147483648,

LOG_DEBUG = 10000,

LOG_INFO = 20000,

LOG_WARN = 30000,

LOG_ERROR = 40000,

LOG_FATAL = 50000,

LOG_OFF = 2147483647

} logLevels;

void lou_setLogLevel(logLevels level);

This function can be used to influence the amount of logging, from fatal error messages
only to detailed debugging messages. Supported values are LOG_DEBUG, LOG_INFO, LOG_
WARN, LOG_ERROR, LOG_FATAL and LOG_OFF. Enabling logging at a given level also enables
logging at all higher levels. Setting the level to LOG_OFF disables logging. The default level
is LOG_INFO.

Chapter 6: Programming with liblouis 37

6.15 lou logFile

void lou_logFile (char *fileName);

This function is used when it is not convenient either to let messages be printed on stderr
or to use redirection, as when liblouis is used in a GUI application or in liblouisutdml. Any
error messages generated will be printed to the file given in this call. The entire path name
of the file must be given.

6.16 lou logPrint (deprecated)

void lou_logPrint (char *format, ...);

This function is called like fprint. It can be used by other libraries to print messages
to the file specified by the call to lou_logFile. In particular, it is used by the companion
library liblouisutdml.

This function is deprecated as of version 2.6.0.

6.17 lou logEnd

lou_logEnd ();

This function is used at the end of processing a document to close the log file, so that it
can be read by the rest of the program.

6.18 lou setDataPath

char * lou_setDataPath (char *path);

This function is used to tell liblouis and liblouisutdml where tables and files are located.
It thus makes them completely relocatable, even on Linux. The path is the directory where
the subdirectories liblouis/tables and liblouisutdml/lbu_files are rooted or located.
The function returns a pointer to the path.

6.19 lou getDataPath

char * lou_getDataPath ();

This function returns a pointer to the path set by lou_setDataPath. If no path has
been set it returns NULL.

6.20 lou getTable

void *lou_getTable (char *tablelist);

tablelist is a list of names of table files separated by commas, as explained previously
(see [tableList parameter in lou_translateString], page 32). If no errors are found this
function returns a pointer to the compiled table. If errors are found error messages are
logged to the log callback (see lou_registerLogCallback). Errors result in a NULL pointer
being returned.

Chapter 6: Programming with liblouis 38

6.21 lou readCharFromFile

int lou_readCharFromFile (const char *fileName, int *mode);

This function is provided for situations where it is necessary to read a file which may
contain little-endian or big-endian 16-bit Unicode characters or ASCII8 characters. The
return value is a little-endian character, encoded as an integer. The fileName parameter is
the name of the file to be read. The mode parameter is a pointer to an integer which must
be set to 1 on the first call. After that, the function takes care of it. On end-of-file the
function returns EOF.

6.22 lou free

void lou_free ();

This function should be called at the end of the application to free all memory allocated
by liblouis. Failure to do so will result in memory leaks. Do NOT call lou_free after each
translation. This will force liblouis to compile the translation tables every time they are
used, resulting in great inefficiency.

6.23 Python bindings

There are Python bindings for lou_translateString, lou_translate and lou_version.
For installation instructions see the the README file in the python directory. Usage infor-
mation is included in the Python module itself.

39

Opcode Index

A
after . 16
always . 12

B
before . 16
begbold . 21
begcaps . 7
begcomp . 10
begital . 21
begmidword . 14
begnum . 15
begunder . 21
begword . 14
boldsign . 21

C
capsign . 7
capsnocont . 11
class . 16
comp6 . 12
compbrl . 11
context . 17
contraction . 13
correct . 20

D
decpoint . 10
digit . 5
display . 20

E
endbold . 21
endcaps . 7
endcomp . 10
endital . 21
endnum . 15
endunder . 22
endword . 14
exactdots . 14

F
firstletterbold . 9
firstletterital . 8
firstletterunder . 10
firstwordbold . 9
firstwordital . 8
firstwordunder . 9

G
grouping . 6

H
hyphen . 11

I
include . 20
italsign . 21

J
joinnum . 15
joinword . 13

L
largesign . 12
lastletterbold . 9
lastletterital . 8
lastletterunder . 10
lastwordboldafter . 9
lastwordboldbefore . 9
lastworditalafter . 8
lastworditalbefore . 8
lastwordunderafter . 10
lastwordunderbefore . 10
lenboldphrase . 9
lenitalphrase . 9
lenunderphrase . 10
letsign . 7
letter . 6
litdigit . 6
literal . 22
locale . 20
lowercase . 6
lowword . 13

M
math . 6
midendword . 14
midnum . 15
midword . 14
multind . 21

Opcode Index 40

N
noback . 11
nocont . 12
nocross . 13
nofor . 11
noletsign . 7
noletsignafter . 7
noletsignbefore . 7
numsign . 7

P
partword . 14
pass2 . 17
pass3 . 17
pass4 . 17
postpunc . 14
prepunc . 14
prfword . 14
punctuation . 5

R
repeated . 12
replace . 12
repword . 12

S
sign . 6
singleletterbold . 9
singleletterital . 8
singleletterunder . 10
space . 5
sufword . 14
swapcc . 16
swapcd . 16
swapdd . 16
syllable . 13

U
undefined . 20
undersign . 21
uplow . 5
uppercase . 6

W
word . 13

41

Function Index

lou_backTranslate . 34
lou_backTranslateString . 34
lou_charToDots . 36
lou_compileString . 35
lou_dotsToChar . 35
lou_free . 38
lou_getDataPath . 37
lou_getTable . 37
lou_hyphenate . 35
lou_logEnd . 37

lou_logFile . 37

lou_logPrint . 37

lou_readCharFromFile . 38

lou_registerLogCallback . 36

lou_setDataPath . 37

lou_setLogLevel . 36

lou_translate . 33

lou_translateString . 32

lou_version . 32

42

Program Index

lou_allround . 26
lou_checkhyphens . 27
lou_checktable . 26

lou_debug . 24
lou_trace . 25
lou_translate . 27

	Introduction
	Who is this manual for
	How to read this manual

	How to Write Translation Tables
	Overview
	Hyphenation Tables
	Character-Definition Opcodes
	Braille Indicator Opcodes
	Emphasis Opcodes
	Special Symbol Opcodes
	Special Processing Opcodes
	Translation Opcodes
	Character-Class Opcodes
	Swap Opcodes
	The Context and Multipass Opcodes
	The correct Opcode
	Miscellaneous Opcodes
	Deprecated Opcodes

	Notes on Back-Translation
	Testing Translation Tables interactively
	lou_debug
	lou_trace
	lou_checktable
	lou_allround
	lou_translate
	lou_checkhyphens

	Automated Testing of Translation Tables
	Translation Table Test Harness
	Translation Table Doctests

	Programming with liblouis
	License
	Overview
	Data structure of liblouis tables
	lou_version
	lou_translateString
	lou_translate
	lou_backTranslateString
	lou_backTranslate
	lou_hyphenate
	lou_compileString
	lou_dotsToChar
	lou_charToDots
	lou_registerLogCallback
	lou_setLogLevel
	lou_logFile
	lou_logPrint (deprecated)
	lou_logEnd
	lou_setDataPath
	lou_getDataPath
	lou_getTable
	lou_readCharFromFile
	lou_free
	Python bindings

	Opcode Index
	Function Index
	Program Index

