Inter-Client Communication
Conventions Manual

X Consortium Standard

David Rosenthal, Sun Microsystems, Inc.
Version 2 edited by: Stuart W. Marks
SunSoft, Inc.

Inter-Client Communication Conventions Manual: X Consortium

Standard

by David Rosenthal

Version 2 edited by: Stuart W. Marks
SunSoft, Inc.

Version 2.0
X Window System is atrademark of The Open Group
Copyright © 1988, 1991, 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1987, 1988, 1989, 1993, 1994 Sun Microsystems, Inc

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. Sun Microsystems makes no representations about the suitability for any
purpose of the information in this document. This documentation is provided asiswithout express or implied warranty.

Table of Contents

Preface 10 VErSION 2.0 ...t %
Preface 10 VEISION L1 ...ttt ettt e e et Vi
O | gL oo (0 1o o RO UPPTTR SO 1
Evolution of the CONVENLIONSc.uuuiiiii e 1

A OIS e e et 1
WHat ATE ALTOMS? ..ttt e s 2

Predefined ATOMScooii e 2

NaMING CONVENTIONS ...ttt ettt et ee e e enn e ennans 2

SEIMANTICS ..ttt ettt et et 2

NAIME SPBCES ... eeveeeii ettt 2
DisCriminated NAIMESooiiiiiieiii e 3

2. Peer-to-Peer Communication by Means of SEleCtionscccouviiiiiiiiiiiiiii e 5
Acquiring SElection OWNErSNIPoovuiiiiii e 5
Responsibilities of the SElection OWNEYoooiiiiiiiii e 6
Giving Up SeleCtion OWNEISNIuiieieieeeii ettt e e e eeens 8
Voluntarily Giving Up Selection OWNErSNiPc.uuieiiiiiiieiiiiiieeeeie e 9

Forcibly Giving Up Selection OWNErSNiPuuiiiiiiiieiiiie e 9

REQUESEING 8 SEIECLION ...oeeecieii e 9
Large Data Transfars i 11

Use Of SEECHION ALOMS ..ottt 11
SEECHION ATOIMS ..ottt e e e e 12

TaGEE ATOMIS .. oee ettt 13

Selection Targets with Side EffectS ..., 15

Use Of SElECtion PrOPEITIESuiiiiiiieieie et 16
TEXT PrOPEITIES ...ttt ettt e et e eeat e eens 17

INCR PrOPEITIES ..ottt ettt e et e s 18
DRAWABLE PrOPEItiESu ettt ettt 19

SPAN PrOPEITIES ...vueieiiiie ettt 19

MaNAGEr SEIECHIONSveieeiiie ettt e e et et 19

3. Peer-to-Peer Communication by Means of Cut BUffersccoooeviiiiiiiii e, 21
4. Client-to-Window-Manager COMMUNICALIONcoeuuuniiiiiiiieeiii e e e 22
ClIENE'S ACLIONS ... et e et ettt e e e et e e ena e eees 22
Creating a Top-Level WINAOWc..uuiiiiiiiiiiiiiieiee e 22

ClIENt PrOPEITIES ...eveeeeeii e et 23

Window Manager ProPertiesccuuuuiiiiii et 30

Changing WINAOW SEEEEcoevuineiiiiie et e e e 31
Configuring the WINAOWcouuiiiiiieii e 33

Changing Window ATIHDULESoiiiiiiii e 35

INPUL FOCUS ...t ettt e e e e eaee e 36

1600] 0] 10710 < S TSP UUPPPTTRPPPPIN 38

o] 1 PP TPPTPPTIPPR 40

POP-UP WINAOWS ...ttt 41

WINAOW GFOUPDS ...ttt ettt e et e et et eeeeb e e eeaa e eeees 41

Client Responses to Window Manager ACHIONSc.uuuiviiiiiiieiiiiiieeeei e 42
REDAIENTING ...ttt 42
Redirection Of OPEralioNSuiiieiiiieiiiii e 42

WINAOW MOV ...ttt e e e e et e e e 44

WINAOW RESIZE ...ttt 44

[conify aNd DEICONITYuuieiiiii e 44

Colormap CRANGE .. .oeviieieii et et e et e et e e e e e eeee 44

INPUL FOCUS ...t ettt e e e e eaee e 44
ClientMeSSage EVENTS ... e e 45
REIreCting REGUESES iiiiiiiieeeei e et 46
Communication with the Window Manager by Means of Selections................ccceeveeeenn. 47
Summary of Window Manager Property TYPESocvuueiieiiieieiie et 47

Inter-Client Communication

Conventions Manual

5. Session Management and Additional Inter-Client EXChangescoovvvviviiiiiiiiiniciiieeiis 49
Client Support for Session ManagemMENtccvuiieiiiieiiiiieiie e e e e 49
Window Manager Support for Session Managementoeevveeeeiinieeieeeiiieeiineeaneenens 50
Support for ICE Client RENAEZVOUSuiiiiiiiiiiciiie e 50

6. Manipulation of Shared RESOUICESuiiiiiiiii e e e e e e 51
TRE INPUL FOCUSuiiiicii et e e e e e et e e et e et e e aanaaes 51

LI L= o101 P 51

L - PR 51

100 o011 7= 1= N 52

The Keyboard Mappingccuueeiiieiiiie e e e e e e e e e e e e e e e e eanaeeaes 53

The Modifier MapPiNgcouviiiieiieee e e e e e e e e e e e e e eaanas 54

7. Device Color CharaCteriZationuuiieeiuiieiiiiie e e et e e e e e e e e et 56
XYZ <-> RGB CONVErSION MEITCESccovvviieeiiiiieee it ee et e e e e 56
Intensity (dA RGB Value CONVEISIONuiivuiiiiiieiiieeeieeeeiee et e et e s et e e e e e stnaeeaneeaens 57

ST o 0o 11 =T o PP 60
I LI R TS o[1 Y 60

YN oY= o) I 1 o) Y/ 61
R R] - i PSSP 61

The July 27, 1988, DIEffuuiieiiiieeeiii et et e e et e e e eaans 61

The PUBIIC REVIEW DIaffS ..ouvuiiiiiii e e e e e e eees 61
Version 1.0, JULY 1989uuuiiiiiiie et e 62

RV 2= £ Lo o 0 P 63
Public Review Draft, December 1993uiiiiiiiiieiiiii e 63
Version 2.0, APril 1994 ... 64

B. Suggested ProtoCOl REVISIONScouuiiiiiiiiiii e e e e e e e e aanaees 65
C. Obsolete Session Manager CONVENTIONScvuuueiiiieiieeiieeee e e e e e e e e e e e e eaenns 66
(0] 0= 1= 66
WM_COMMAND PrOPEMY .vvuieiiiiiieeeii et et e e e e e e eeeainnee e 66
WM_CLIENT_MACHINE PrOPEY ..vuuieiiiiieiiiieeeeiie e e e e e i 66

LI 10011 0= 1o TSP 66
Client Responses to Session Manager ACHONSuviiieiii e e e e 67
SAVING CHENE SEALE ...vuiiiiii e e e e e e e e e e e e eaaeees 67

WINAOW DEIELION ...t e e e e e et e eeeaa e eeees 68

Summary of Session Manager Property TYPES «.vvuevvi i e e e e 68

Preface to Version 2.0

Thegoal of theICCCM Version 2.0 effort wasto add new facilities, to fix problemswith earlier drafts,
and to improve readability and understandability, while maintaining compatibility with the earlier
versions. This document is the product of over two years of discussion among the members of the X
Consortium'swit al k working group. The following people deserve thanks for their contributions:

Gabe Beged- Dov Bill Janssen
Chan Benson Vani a Jol obof f
Jordan Brown Phil Karlton
Larry Cable Kal eb Kei t hl ey
Ellis Cohen Mar k Manasse
Donna Converse Ral ph Mor
Brian Cripe Todd Newran
Susan Dahl berg Bob Scheifler
Pet er Dai f uku Keith Tayl or
Andr ew deBl oi s Ji m VanG | der
dive Feather M ke Wexl er

St ephen G | dea M chael Yee

Christian Jacobi
It has been a privilege for me to work with this fine group of people.
Stuart W. Marks

December 1993

Preface to Version 1.1

David Rosenthal had overall architectural responsibility for the conventions defined in this document;
he wrote most of the text and edited the document, but its devel opment has been a communal effort.
The details were thrashed out in meetings at the January 1988 MIT X Conference and at the 1988
Summer Usenix conference, and through months (and megabytes) of argument on the wnt al k mail
aias. Thanks are due to everyone who contributed, and especially to the following people.

For the Selection section:

Jerry Farrell
Phil Karlton

Loretta Guarino Reid

Mar k Manasse
Bob Schei fl er

For the Cut-Buffer section:

Andr ew Pal ay

For the Window and Session Manager sections:

Todd Brunhof f

El lis Cohen
Jim Fulton

Hani a Gaj ewska
Jor dan Hubbard
Kerry Ki nmbrough
Audr ey | shi zaki

Matt Landau
Mar k Manasse
Bob Schei fl er
Ral ph Swi ck
M ke Weéxl er
d enn W dener

For the Device Color Characterization section:

Kei t h Packard

In addition, thanks are due to those who contributed to the public review:

Gary Conbs
Errol Crary
Nancy Cyprych
John Di amant
Clive Feather
Bur ns Fi sher
Ri chard Greco
Ti m G eenwood
Kee Hi nckl ey
Bri an Holt
John Interrante

John lrwn
Vani a Jol obof f
John Laporta
Ken Lee
Stuart Marks
Alan M ms

Col as Nahaboo
Mar k Patrick
St eve Pitschke
Brad Reed
John Thonas

Vi

Chapter 1. Introduction

It was an explicit design goal of X Version 11 to specify mechanism, not policy. Asaresult, aclient
that converses with the server using the protocol defined by the X Window System Protocol, Version
11 may operate correctly inisolation but may not coexist properly with others sharing the same server.

Being a good citizen in the X Version 11 world involves adhering to conventions that govern inter-
client communications in the following areas:

* Selection mechanism

» Cut buffers

» Window manager

* Session manager

» Manipulation of shared resources
* Device color characterization

This document proposes suitable conventions without attempting to enforce any particular user
interface. To permit clients written in different languages to communicate, these conventions are
expressed solely interms of protocol operations, not in terms of their associated Xlib interfaces, which
are probably more familiar. The binding of these operations to the Xlib interface for C and to the
equivaent interfaces for other languages is the subject of other documents.

Evolution of the Conventions

In the interests of timely acceptance, the Inter-Client Communication Conventions Manual (ICCCM)
covers only aminimal set of required conventions. These conventions will be added to and updated
as appropriate, based on the experiences of the X Consortium.

Asfar as possible, these conventions are upwardly compatible with those in the February 25, 1988,
draft that was distributed with the X Version 11, Release 2, of the software. In some areas, semantic
problems were discovered with those conventions, and, thus, complete upward compatibility could
not be assured. These areas are noted in the text and are summarized in Appendix A.

In the course of developing these conventions, a number of minor changes to the protocol were
identified as desirable. They also are identified in the text, are summarized in Appendix B, and are
offered as input to a future protocol revision process. If and when a protocol revision incorporating
these changes is undertaken, it is anticipated that the ICCCM will need to be revised. Because it
is difficult to ensure that clients and servers are upgraded simultaneously, clients using the revised
conventions should examine the minor protocol revision number and be prepared to use the older
conventions when communicating with an older server.

It isexpected that these revisions will ensure that clients using the conventions appropriate to protocol

minor revision nwill interoperate correctly with those that use the conventions appropriate to protocol
minor revision n + 1 if the server supports both.

Atoms

Many of the conventions use atoms. To assist the reader, the following sections attempt to amplify the
description of atoms that is provided in the protocol specification.

Introduction

What Are Atoms?

At the conceptual level, atoms are unique names that clients can use to communicate information to
each other. They can be thought of as a bundle of octets, like a string but without an encoding being
specified. The elements are not necessarily ASCII characters, and no case folding happens. 1

The protocol designersfelt that passing these sequences of bytes back and forth across the wirewould
be too costly. Further, they thought it important that events as they appear on the wire have a fixed
size (in fact, 32 bytes) and that because some events contain atoms, a fixed-size representation for
them was needed.

To allow afixed-size representation, a protocol request (| nt er nAt om) was provided to register a
byte sequence with the server, which returns a 32-bit value (with the top three bits zero) that mapsto
the byte sequence. Theinverse operator isaso available (Get At omNare).

Predefined Atoms

The protocol specifies anumber of atoms as being predefined:

Predefined atoms are not strictly necessary and may not be useful in al
environments, but they will eliminate many | nt er nAt om requests in most
applications. Note that they are predefined only in the sense of having numeric
values, not in the sense of having required semantics.

Predefined atoms are an implementation trick to avoid the cost of interning many of the atoms that
are expected to be used during the startup phase of all applications. The results of thel nt er nAt om
requests, which require a handshake, can be assumed a priori.

Languageinterfaces should probably cache the atom-name mappings and get them only when required.
The CLX interface, for instance, makes no distinction between predefined atoms and other atoms; all
atoms are viewed as symbols at the interface. However, a CLX implementation will typically keep a
symbol or atom cache and will typically initialize this cache with the predefined atoms.

Naming Conventions

The built-in atoms are composed of uppercase ASCII characters with the logical words separated
by an underscore character (), for example, WM_ICON_NAME. The protocol specification
recommends that atoms used for private vendor-specific reasons should begin with an underscore.
To prevent conflicts among organizations, additional prefixes should be chosen (for example,
DEC WM_DECORATION_GEOMETRY).

The names were chosen in this fashion to make it easy to use them in a natural way within LISP.
Keyword constructors allow the programmer to specify the atoms as LISP atoms. If the atoms were
not all uppercase, special quoting conventions would have to be used.

Semantics

The core protocol imposes no semantics on atoms except as they are used in FONTPROP structures.
For further information on FONTPROP semantics, see the X Logical Font Description Conventions.

Name Spaces

The protocol defines six distinct spaces in which atoms are interpreted. Any particular atom may or
may not have some valid interpretation with respect to each of these name spaces.

! The comment in the protocol specification for | nt er nAt omthat 1SO Latin-1 encoding should be used is in the nature of a convention;
the server treats the string as a byte sequence.

Introduction

Space Briefly Examples

Property name Name WM_HINTS,
WM_NAME,
RGB_BEST_MAP, ...

Property type Type WM_HINTS,
CURSOR,
RGB_COLOR _MAP, ...

Selection name Selection PRIMARY,
SECONDARY,
CLIPBOARD

Selection target Target FILE_NAME,
POSTSCRIPT,
PIXMAP, ...

Font property QUAD_WIDTH,
POINT_SIZE, ...

d i ent Message WM_SAVE_YOURSELF,

type _DEC_SAVE _EDITS,
&...

Discriminated Names

Sometimes aprotocol requires an arbitrary number of similar objects that need unique names (usually
because the objects are created dynamically, so that names cannot be invented in advance). For
example, a colormap-generating program might use the selection mechanism to offer colormaps for
each screen and so needs a selection name for each screen. Such names are called "discriminated
names' and are discriminated by some entity. This entity can be:

A screen
An X resource (a window, a colormap, a visual, etc.)
A client

If it isonly necessary to generate afixed set of names for each value of the discriminating entity, then
the discriminated names are formed by suffixing an ordinary name according to the value of the entity.

If name is a descriptive portion for the name, d is a decimal number with no leading zeroes, and x
is a hexadecimal number with exactly 8 digits, and using uppercase |etters, then such discriminated
names shall have the form:

Name Discriminated Form Example

by

screen number name_Sd WM_COMMS S2

X resource name_RX GROUP_LEADER_R1234ABCD

To discriminate a name by client, use an X resource ID created by that client. This resource can be
of any type.

Sometimes it is simply necessary to generate a unique set of names (for example, for the properties
on awindow used by a MUL TIPLE selection). These hames should have the form:
ud (e.g., W VI W2 W3 ...)

if the names stand totally alone, and the form:

Introduction

name_Ud (e.g., FOO U0 BAR W FOO UL BAR UL ...)

if they come in sets (here there are two sets, named "FOQ" and "BAR"). The stand-alone Ud form
should be used only if it is clear that the module using it has complete control over the relevant
namespace or has the active cooperation of al other entitiesthat might also use these names. (Naming
properties on awindow created specifically for a particular selection is such a use; naming properties
on the root window is almost certainly not.)

In aparticularly difficult case, it might be necessary to combine both forms of discrimination. If this

happens, the U form should come after the other form, thus:

FOO R12345678_U23

Rationale

Existing protocols will not be changed to use these naming conventions, because
doing so will cause too much disruption. However, it is expected that future
protocols -- both standard and private -- will use these conventions.

Chapter 2. Peer-to-Peer
Communication by Means of
Selections

Selections are the primary mechanism that X Version 11 defines for the exchange of information
between clients, for example, by cutting and pasting between windows. Note that there can be an
arbitrary number of selections (each named by an atom) and that they are global to the server. the
section called “ Use of Selection Atoms”. discusses the choice of an atom. Each selection is owned by
aclient and is attached to awindow.

Sel ections communicate between an owner and a requestor. The owner has the data representing the
value of itsselection, and the requestor receivesit. A requestor wishing to obtain thevalue of aselection
provides the following:

* The name of the selection

» The name of a property

* A window

» The atom representing the data type required

» Optionally, some parameters for the request

If the selection is currently owned, the owner receives an event and is expected to do the following:
» Convert the contents of the selection to the requested data type

 Place this datain the named property on the named window

 Send the requestor an event to let it know the property is available

Clients are strongly encouraged to use this mechanism. In particular, displaying text in a permanent
window without providing the ability to select and convert it into a string is definitely considered
antisocial.

Note that all data transferred between an owner and a regquestor must usualy go by means of the
server in an X Version 11 environment. A client cannot assume that another client can open the
same files or even communicate directly. The other client may be talking to the server by means of a
completely different networking mechanism (for example, one client might be DECnet and the other
TCP/IP). Thus, passing indirect referencesto data (such as, file names, host names, and port numbers)
is permitted only if both clients specifically agree.

Acquiring Selection Ownership

A client wishing to acquire ownership of aparticular selection should call Set Sel ect i onOaner ,
which is defined as follows:

Set Sel ect i onOmner

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP o or Cur rent Ti ne

The client should set the specified selection to the atom that represents the selection, set the specified
owner to some window that the client created, and set the specified time to some time between the

Peer-to-Peer Communication
by Means of Selections

current last-change time of the sel ection concerned and the current server time. Thistimevalue usually
will be obtained from the timestamp of the event that triggers the acquisition of the selection. Clients
should not set the time value to Cur r ent Ti me, because if they do so, they have no way of finding

when they gained ownership of the selection. Clients must use awindow they created so that requestors
can route events to the owner of the selection.

Convention

Clients attempting to acquire a selection must set the time vaue of the
Set Sel ecti onOmer request to the timestamp of the event triggering the
acquisition attempt, not to Cur r ent Ti me. A zero-length append to a property is
away to obtain atimestamp for this purpose; the timestamp isin the corresponding
PropertyNoti fy event.

If the time in the Set Sel ecti onOmer request is in the future relative to the server's
current time or is in the past relative to the last time the specified selection changed hands, the

Set Sel ecti onOmner request appears to the client to succeed, but ownership is not actually
transferred.

Because clients cannot name other clients directly, the specified owner window is used to
refer to the owning client in the replies to Get Sel ect i onOaner, in Sel ect i onRequest
and Sel ecti onC ear events, and possibly as a place to put properties describing the
selection in question. To discover the owner of a particular selection, a client should invoke
Get Sel ecti onOmner , whichisdefined as follows:

Cet Sel ecti onOmner

selection: ATOM

->

owner: WINDOW or None

Convention

Clients are expected to provide some visible confirmation of selection ownership.
To make thisfeedback reliable, aclient must perform asequence like thefollowing:

Set Sel ecti onOmner (sel ecti on=PRI MARY, owner =W ndow, ti nme=ti mestanp)
owner = Cet Sel ecti onOaner (sel ecti on=PRI MARY)
if (owner != Wndow) Failure

If theSet Sel ect i onOaner request succeeds (not merely appearsto succeed), the client that issues

it is recorded by the server as being the owner of the selection for the time period starting at the
specified time.

Responsibilities of the Selection Owner

When arequestor wants the value of a selection, the owner receivesa Sel ect i onRequest event,
which is defined as follows:

Sel ecti onRequest

owner: WINDOW
selection: ATOM
selection: ATOM

L At present, no part of the protocol requires requestors to send events to the owner of a selection. This restriction isimposed to prepare for
possible future extensions.

Peer-to-Peer Communication
by Means of Selections

target: ATOM

property: ATOM or None

reguestor: WINDOW

time: TIMESTAMP or Cur r ent Ti e

The specified owner and selection will be the values that were specified in the
Set Sel ecti onOmner request. The owner should compare the timestamp with the period it has
owned the selection and, if the time is outside, refuse the Sel ect i onRequest by sending the
requestor window a Sel ect i onNoti fy event with the property set to None (by means of a
SendEvent request with an empty event mask).

More advanced selection owners are free to maintain a history of the value of the selection and to
respond to requests for the value of the selection during periods they owned it even though they do
not own it now.

If the specified property isNone, the requestor isan obsol ete client. Owners are encouraged to support
these clients by using the specified target atom as the property name to be used for the reply.

Otherwise, the owner should use the target to decide the form into which the selection should be
converted. Some targets may be defined such that requestors can pass parameters along with the
request. The owner will find these parametersin the property named in the sel ection request. Thetype,
format, and contents of this property are dependent upon the definition of the target. If the target is
not defined to have parameters, the owner should ignore the property if it is present. If the selection
cannot be converted into aform based on the target (and parameters, if any), the owner should refuse
the Sel ect i onRequest as previously described.

If the specified property is not None, the owner should place the data resulting from converting the
selection into the specified property on the requestor window and should set the property's type to
some appropriate value, which need not be the same as the specified target.

Convention

All propertiesused toreply to Sel ect i onRequest events must be placed on the
requestor window.

In either case, if the data comprising the selection cannot be stored on the requestor window
(for example, because the server cannot provide sufficient memory), the owner must refuse the
Sel ecti onRequest , aspreviously described. Seealso the section called “Large Data Transfers’.

If the property is successfully stored, the owner should acknowledge the successful conversion by
sending the requestor window a Sel ecti onNot i fy event (by means of a SendEvent request
with an empty mask). Sel ect i onNot i f y isdefined asfollows:

Sel ectionNotify

requestor: WINDOW

selection, target: ATOM

property: ATOM or None

time: TIMESTAMP or Cur rent Ti e

The owner should set the specified selection, target, time, and property arguments to the values
received in the Sel ecti onRequest event. (Note that setting the property argument to None
indicates that the conversion requested could not be made.)

Convention

The selection, target, time, and property arguments in the Sel ecti onNoti fy
event should be set to the values received in the Sel ect i onRequest event.

Peer-to-Peer Communication
by Means of Selections

If the owner receives morethan one Sel ect i onRequest event with the same requestor, selection,
target, and timestamp it must respond to them in the same order in which they were received.

Rationale

It is possible for a requestor to have multiple outstanding requests that use the
same reguestor window, selection, target, and timestamp, and that differ only in
the property. If this occurs, and one of the conversion requests fails, the resulting
Sel ecti onNot i fy eventwill haveits property argument set to None. Thismay
make it impossible for the requestor to determine which conversion request had
failed, unless the requests are responded to in order.

The data stored in the property must eventually be deleted. A convention is needed to assign the
responsibility for doing so.

Convention

Selection requestors are responsible for deleting properties whose names they
receive in Sel ectionNoti fy events (See the section called “Requesting a
Selection”) or in properties with type MULTIPLE.

A selection owner will often need confirmation that the data comprising the selection has actually
been transferred. (For example, if the operation has side effects on the owner'sinternal data structures,
these should not take place until the requestor hasindicated that it has successfully received the data.)
Owners should expressinterest in Pr oper t yNot i fy eventsfor the specified requestor window and
wait until the property in the Sel ect i onNot i fy event has been deleted before assuming that the
selection data has been transferred. For the MULTIPLE request, if the different conversions require
separate confirmation, the selection owner can aso watch for the deletion of the individual properties
named in the property in the Sel ecti onNot i f y event.

When some other client acquiresaselection, the previousowner receivesaSel ect i onCl ear event,
which is defined as follows:

Sel ecti ond ear

owner: WINDOW
selection: ATOM
time: TIMESTAMP

The timestamp argument is the time at which the ownership changed hands, and the owner argument
is the window the previous owner specified inits Set Sel ecti onOmner request.

If an owner loses ownership while it has atransfer in progress (that is, before it receives notification
that the requestor has received all the data), it must continue to service the ongoing transfer until it
iscomplete.

If the selection value completely changes, but the owner happens to be the same client (for example,
selecting atotally different piece of text inthe samext er masbefore), then the client should reacquire
the selection ownership asiif it were not the owner, providing a new timestamp. If the selection value
is modified, but can still reasonably be viewed as the same selected object, 2 the owner should take
no action.

Giving Up Selection Ownership

Clients may either give up selection ownership voluntarily or lose it forcibly as the result of some
other client's actions.

2 The division between these two casesis a matter of judgment on the part of the software developer.

Peer-to-Peer Communication
by Means of Selections

Voluntarily Giving Up Selection Ownership

To relinquish ownership of aselection voluntarily, aclient should executeaSet Sel ect i onOaner
request for that selection atom, with owner specified as None and the time specified as the timestamp
that was used to acquire the selection.

Alternatively, the client may destroy the window used as the owner value of the
Set Sel ecti onOaner request, or the client may terminate. In both cases, the ownership of the
selection involved will revert to None.

Forcibly Giving Up Selection Ownership

If aclient givesup ownership of aselection or if some other client executesaSet Sel ect i onOaner
for it and thus reassignsit forcibly, the previous owner will receiveaSel ect i onCl ear event. For
thedefinitionof aSel ecti onCl ear event, see the section called “ Responsibilities of the Selection
Owner”

The timestamp is the time the selection changed hands. The specified owner is the window that was
specified by the current owner inits Set Sel ecti onOaner request.

Requesting a Selection

A client that wishes to obtain the value of a selection in a particular form (the regquestor) issues a
Convert Sel ect i on request, which is defined as follows:

Convert Sel ecti on

selection, target: ATOM

property: ATOM or None

reguestor: WINDOW

time: TIMESTAMP or Cur rent Ti e

The selection argument specifies the particular selection involved, and the target argument specifies
the required form of the information. For information about the choice of suitable atoms to use, see
the section called “Use of Selection Atoms’ The requestor should set the requestor argument to a
window that it created; the owner will place the reply property there. The requestor should set the time
argument to the timestamp on the event that triggered the request for the selection value. Note that
clients should not specify Cur r ent Ti ne.

Convention

Clients should not use CurrentTinme for the time argument of a
Convert Sel ect i on request. Instead, they should use the timestamp of the event
that caused the request to be made.

The requestor should set the property argument to the name of a property that the owner can use to
report the value of the selection. Reguestors should ensure that the named property does not exist on
the window before issuing the Convert Sel ecti on request.3 The exception to this rule is when
the reguestor intends to pass parameters with the request (see below).

Rationale

It is necessary for requestors to delete the property before issuing the request so
that the target can later be extended to take parameters without introducing an

3 This requirement is new in version 2.0, and, in general, existing clients do not conform to this requirement. To prevent these clients from
breaking, no existing targets should be extended to take parameters until sufficient time has passed for clients to be updated. Note that the
MULTIPLE target was defined to take parameters in version 1.0 and its definition is not changing. There is thus no conformance problem
with MULTIPLE.

Peer-to-Peer Communication
by Means of Selections

incompatibility. Also note that the requestor of a selection need not know the client
that owns the selection nor the window on which the selection was acquired.

Some targets may be defined such that requestors can pass parameters along with the request. If the
requestor wishes to provide parameters to a request, they should be placed in the specified property
on the requestor window before the requestor issues the Convert Sel ect i on request, and this
property should be named in the request.

Some targets may be defined so that parameters are optional. If no parameters are to be supplied with
the request of such atarget, the requestor must ensure that the property does not exist before issuing
the Convert Sel ecti on request.

Theprotocol allowsthe property field to be set to None, in which case the owner is supposed to choose
aproperty name. However, it is difficult for the owner to make this choice safely.

Conventions
» Requestors should not use None for the property argument of aConvert Sel ect i on request.

» Ownersreceiving Convert Sel ect i on requestswith aproperty argument of None aretalkingto
an obsol ete client. They should choose the target atom asthe property nameto be used for thereply.

The result of the Convert Sel ecti on request is that a Sel ecti onNotify event will be
received. For the definition of aSel ect i onNot i fy event, see the section called “ Responsibilities
of the Selection Owner”.

The requestor, selection, time, and target arguments will be the same as those on the
Convert Sel ecti on request.

If the property argument is None, the conversion has been refused. This can mean either that thereis
no owner for the selection, that the owner does not support the conversion implied by the target, or
that the server did not have sufficient space to accommodate the data.

If the property argument isnot None, then that property will exist on the requestor window. The value
of the selection can be retrieved from this property by using the Get Pr opert y request, which is
defined as follows:

Cet Property

window: WINDOW

property: ATOM

type: ATOM or AnyPr opertyType

long-offset, long-length: CARD32

delete: BOOL

->

type: ATOM or None

format: {0, 8, 16, 32}

bytes-after: CARD32

value: LISTOfINT8 or LISTofINT16 or LISTofINT32

Get Property to retrieve the value of a selection, the property argument should be set to the
corresponding value in the Sel ecti onNoti fy event. Because the requestor has no way of
knowing beforehand what type the selection owner will use, the type argument should be set to
AnyPr opertyType. Several Get Property requests may be needed to retrieve al the data in
the selection; each should set the long-offset argument to the amount of data received so far, and the
size argument to some reasonable buffer size (see the section called “Large Data Transfers’.). If the
returned value of bytes-after is zero, the whole property has been transferred.

10

Peer-to-Peer Communication
by Means of Selections

Once dl the data in the selection has been retrieved (which may require getting the values of several
properties -- see the section called “Use of Selection Properties’.), the requestor should delete the
property in the Sel ecti onNot i fy request by using a Get Pr operty request with the delete
argument set to Tr ue. As previously discussed, the owner has no way of knowing when the data has
been transferred to the requestor unless the property isremoved.

Convention

The requestor must del ete the property named inthe Sel ect i onNot i fy onceall
thedatahasbeen retrieved. Therequestor should invokeeither Del et ePr operty
or Get Pr operty (delete==True) after it has successfully retrieved all the datain
the selection. For further information, see the section called “Large Data Transfers’.

Large Data Transfers

Selections can get large, which poses two problems:
» Transferring large amounts of datato the server is expensive.

» All servers will have limits on the amount of data that can be stored in properties. Exceeding this
limit will result in an Al | oc error on the ChangePr oper t y request that the selection owner
uses to store the data.

The problem of limited server resourcesis addressed by the following conventions:
Conventions

» Selection owners should transfer the data describing a large selection (relative to the maximum-
reguest-size they received in the connection handshake) using the INCR property mechanism (see
the section called “INCR Properties’.).

» Any client using Set Sel ecti onOaer to acquire selection ownership should arrange to
process Al | oc errors in property change requests. For clients using Xlib, this involves using the
XSet Er r or Handl er function to override the default handler.

» A selection owner must confirm that no Al | oc error occurred while storing the properties for a
selection before replying with aconfirming Sel ecti onNot i f y event.

* When storing large amounts of data (relative to maximum-request-size), clients should use a
sequence of ChangeProperty (node==Append) requests for reasonable quantities of data.
This avoids locking servers up and limits the waste of dataan Al | oc error would cause.

» If an Al | oc error occurs during the storing of the selection data, all properties stored for this
selection should be deleted and the Convert Sel ect i on request should be refused (see the
section called “ Responsibilities of the Selection Owner”.).

» To avoid locking servers up for inordinate lengths of time, requestors retrieving large quantities
of data from a property should perform a series of Get Pr operty requests, each asking for a
reasonable amount of data.

Adviceto Implementors

Single-threaded servers should take care to avoid locking up during large data
transfers.

Use of Selection Atoms

Defining anew atom consumesresourcesinthe server that are not released until the server reinitializes.
Thus, reducing the need for newly minted atomsisan important goal for the use of the selection atoms.

11

Peer-to-Peer Communication
by Means of Selections

Selection Atoms

There can be an arbitrary number of selections, each named by an atom. To conform with the inter-
client conventions, however, clients need deal with only these three selections:

* PRIMARY
+ SECONDARY
» CLIPBOARD

Other selections may be used freely for private communication among related groups of clients.

The PRIMARY Selection

The selection named by theatom PRIMARY isused for all commandsthat take only asingle argument
and is the principal means of communication between clients that use the selection mechanism.

The SECONDARY Selection
The selection named by the atom SECONDARY is used:

» Asthe second argument to commands taking two arguments (for example, "exchange primary and
secondary selections")

» Asameansof obtaining datawhen thereisaprimary selection and the user does not want todisturb it

The CLIPBOARD Selection

The selection named by the atom CLIPBOARD is used to hold data that is being transferred between
clients, that is, data that usually is being cut and then pasted or copied and then pasted. Whenever a
client wantsto transfer data to the clipboard:

* It should assert ownership of the CLIPBOARD.

* If it succeeds in acquiring ownership, it should be prepared to respond to arequest for the contents
of the CLIPBOARD in the usual way (retaining the data to be able to return it). The request may
be generated by the clipboard client described below.

« If it fails to acquire ownership, a cutting client should not actually perform the cut or provide
feedback that would suggest that it has actually transferred data to the clipboard.

The owner should repeat this process whenever the data to be transferred would change.

Clients wanting to paste data from the clipboard should request the contents of the CLIPBOARD
selection in the usual way.

Except while a client is actually deleting or copying data, the owner of the CLIPBOARD selection
may be a single, special client implemented for the purpose. This client maintains the content of the
clipboard up-to-date and responds to requests for data from the clipboard as follows:

* |t should assert ownership of the CLIPBOARD selection and reassert it any time the clipboard data
changes.

« If it loses the sel ection (because another client has some new data for the clipboard), it should:

e Obtain the contents of the selection from the new owner by using the timestamp in the
Sel ecti onC ear event.

» Attempt to reassert ownership of the CLIPBOARD selection by using the same timestamp.

12

Peer-to-Peer Communication
by Means of Selections

» Restart the process using a newly acquired timestamp if this attempt fails. This timestamp
should be obtained by asking the current owner of the CLIPBOARD selection to convert it to
a TIMESTAMP. If this conversion is refused or if the same timestamp is received twice, the
clipboard client should acquire afresh timestamp in the usual way (for example by a zero-length
append to a property).

* |t should respond to requests for the CLIPBOARD contents in the usual way.

A special CLIPBOARD client isnot necessary. The protocol used by the cutting client and the pasting
client is the same whether the CLIPBOARD client is running or not. The reasons for running the
special client include:

« Stahility - If the cutting client wereto crash or terminate, the clipboard valuewould still be available.
» Feedback - The clipboard client can display the contents of the clipboard.

» Simplicity - A client deleting data does not have to retain it for so long, thus reducing the chance
of race conditions causing problems.

The reasons not to run the clipboard client include:

» Performance - Datais transferred only if it is actually required (that is, when some client actually
wants the data).

 Flexibility - The clipboard data may be available as more than one target.

Target Atoms

The atom that a requestor supplies as the target of a Convert Sel ect i on request determines the
form of the data supplied. The set of such atoms is extensible, but a generally accepted base set of
target atoms is needed. As a starting point for this, the following table contains those that have been

suggested so far.

Atom Type Data Received

ADOBE_PORTABLE_DOCUMBNRIRGRMAT [1]

APPLE PICT APPLE PICT [2]

BACKGROUND PIXEL A list of pixel values

BITMAP BITMAP A list of bitmap IDs

CHARACTER_POSITION SPAN The start and end of the
selection in bytes

CLASS TEXT (see the section called
“WM_CLASS Property”.)

CLIENT_WINDOW WINDOW Any top-level window owned
by the selection owner

COLORMAP COLORMAP A list of colormap IDs

COLUMN_NUMBER SPAN The start and end column

COMPOUND_TEXT
DELETE

DRAWABLE

COMPOUND_TEXT
NULL

DRAWABLE

ENCAPSULATED_POSTSCRIP3TRING
ENCAPSULATED_POSTSCRIPSTRINNERCHANGE

FILE_NAME

TEXT

numbers
Compound Text

(see the section called
“DELETE”".)

A list of drawable IDs

[3], Appendix H 2

[3], Appendix H

The full path name of afile

13

Peer-to-Peer Communication
by Means of Selections

Atom Type Data Received

FOREGROUND PIXEL A list of pixel values

HOST_NAME TEXT (see the section called
“WM_CLIENT_MACHINE
Property”.)

INSERT_PROPERTY NULL (see the section called
“INSERT_PROPERTY".)

INSERT_SELECTION NULL (see the section called
“INSERT_SELECTION".)

LENGTH INTEGER The number of bytesin the
selection ®

LINE_NUMBER SPAN The start and end line numbers

LIST LENGTH INTEGER The number of disjoint parts of
the selection

MODULE TEXT The name of the selected
procedure

MULTIPLE ATOM_PAIR (see the discussion that follows)

NAME TEXT (see the section called
“WM_NAME Property”.)

ODIF TEXT I SO Office Document
Interchange Format

OWNER_OS TEXT The operating system of the
owner client

PIXMAP PIXMAP ¢ A list of pixmap IDs

POSTSCRIPT STRING [3]

PROCEDURE TEXT The name of the selected
procedure

PROCESS INTEGER, TEXT The process ID of the owner

STRING STRING ISO Latin-1 (+TAB
+NEWLINE) text

TARGETS ATOM A list of valid target atoms

TASK INTEGER, TEXT Thetask ID of the owner

TEXT TEXT The text in the owner's choice
of encoding

TIMESTAMP INTEGER The timestamp used to acquire
the selection

USER TEXT The name of the user running
the owner

8 Earlier versions of this document erroneously specified that conversion of the PIXMAP target returns a property of type
DRAWABLE instead of PIXMAP. Implementors should be aware of this and may want to support the DRAWABLE type as
well to allow for compatibility with older clients.

® The targets ENCAPSULATED_POSTSCRIPT and ENCAPSULATED_POSTSCRIPT_INTERCHANGE are equivalent to
thetargets_ ADOBE_EPSand_ADOBE_EPSI (respectively) that appear in the selection targetsregistry. The_ ADOBE_ targets
are deprecated, but clients are encouraged to continue to support them for backward compatibility.

€ This definition is ambiguous, as the selection may be converted into any of several targets that may return differing amounts
of data. The requestor has no way of knowing which, if any, of these targets corresponds to the result of LENGTH. Clientsare
advised that no guarantees can be made about the result of a conversion to LENGTH; its useis thus deprecated.

References:

1. Adobe Systems, Incorporated. Portable Document Format Reference Manual. Reading, MA,
Addison-Wesley, ISBN 0-201-62628-4.

14

Peer-to-Peer Communication
by Means of Selections

2. Apple Computer, Incorporated. Inside Macintosh, Volume V. Chapter 4, "Color QuickDraw," Color
Picture Format. ISBN 0-201-17719-6.

3. Adobe Systems, Incorporated. PostScript Language Reference Manual. Reading, MA, Addison-
Wesley, ISBN 0-201-18127-4.

It is expected that this table will grow over time.
Selection owners are required to support the following targets. All other targets are optional .

» TARGETS - The owner should return alist of atomsthat represent the targets for which an attempt
to convert the current selection will succeed (barring unforseeable problemssuch asAl | oc errors).
Thislist should include all the required atoms.

* MULTIPLE - The MULTIPLE target atom is valid only when a property is specified on the
Convert Sel ecti on request. If the property argument in the Sel ecti onRequest event is
None and the target isMULTIPLE, it should be refused.

When a selection owner receives a Sel ecti onRequest (target==MJLTI PLE) request,
the contents of the property named in the request will be alist of atom pairs: the first atom naming
atarget and the second naming aproperty (None isnot valid here). The effect should be asif the
owner had received a sequence of Sel ect i onRequest events (one for each atom pair) except
that:

« The owner should reply with aSel ecti onNot i fy only when all the requested conversions
have been performed.

« If the owner fails to convert the target named by an atom in the MUL TIPLE property, it should
replace that atom in the property with None.

Convention

The entriesin aMULTIPLE property must be processed in the order they appear
in the property. For further information, see the section called “ Selection Targets
with Side Effects’.

The requestor should delete each individual property when it has copied the data from that
conversion, and the property specified in the MULTIPLE request when it has copied all the data.

The requests are otherwise to be processed independently, and they should succeed or fall
independently. The MUL TIPLE target isan optimization that reduces the amount of protocol traffic
between the owner and the requestor; it is not a transaction mechanism. For example, a client may
issue a MULTIPLE request with two targets: a data target and the DELETE target. The DELETE
target will still be processed even if the conversion of the data target fails.

» TIMESTAMP - To avoid some race conditions, it is important that requestors be able to discover
the timestamp the owner used to acquire ownership. Until and unless the protocol is changed so
that aGet Sel ect i onOaner request returns the timestamp used to acquire ownership, selection
owners must support conversion to TIMESTAMP, returning the timestamp they used to obtain the
selection.

Selection Targets with Side Effects

Some targets (for example, DELETE) have side effects. To render these targets unambiguous, the
entriesin aMULTIPLE property must be processed in the order that they appear in the property.

In general, targets with side effects will return no information, that is, they will return a zero length
property of type NULL. (Type NULL means the result of | nt er nAt omon the string "NULL", not
the value zero.) In al cases, the requested side effect must be performed before the conversion is

15

Peer-to-Peer Communication
by Means of Selections

accepted. If the requested side effect cannot be performed, the corresponding conversion request must
be refused.

Conventions

» Targets with side effects should return no information (that is, they should have
a zero-length property of type NULL).

» The side effect of atarget must be performed before the conversion is accepted.

« If the side effect of atarget cannot be performed, the corresponding conversion
reguest must be refused.

Problem

The need to delay responding to the Convert Sel ect i on request until afurther
conversion has succeeded poses problems for the Intrinsics interface that need to
be addressed.

These side-effect targets are used to implement operations such as "exchange PRIMARY and
SECONDARY selections.”

DELETE

When the owner of a selection receives a request to convert it to DELETE, it should delete the
corresponding selection (whatever doing so means for itsinternal data structures) and return a zero-
length property of type NULL if the deletion was successful.

INSERT_SELECTION

When the owner of a selection receives arequest to convert it to INSERT _SELECTION, the property
named will be of type ATOM_PAIR. Thefirst atom will name a selection, and the second will name a
target. The owner should use the selection mechanism to convert the named sel ection into the named
target and should insert it at the location of the selection for which it got the INSERT_SELECTION
request (whatever doing so means for itsinternal data structures).

INSERT_PROPERTY

When the owner of a selection receives a request to convert it to INSERT_PROPERTY, it should
insert the property named in the request at the location of the selection for which it got the
INSERT_SELECTION request (whatever doing so means for itsinternal data structures).

Use of Selection Properties

The names of the properties used in selection data transfer are chosen by the requestor. The use of
None property fieldsinConver t Sel ect i on requests(which request the selection owner to choose
aname) is not permitted by these conventions.

The selection owner always chooses the type of the property in the selection datatransfer. Some types
have special semantics assigned by convention, and these are reviewed in the following sections.

In all cases, arequest for conversion to a target should return either a property of one of the types
listed in the previous table for that target or a property of type INCR and then a property of one of
the listed types.

Certain selection properties may contain resource IDs. The selection owner should ensure that the
resource is not destroyed and that its contents are not changed until after the selection transfer is
complete. Requestorsthat rely on the existence or on the proper contents of aresource must operate on
theresource (for example, by copying the contents of apixmap) before del eting the selection property.

16

Peer-to-Peer Communication
by Means of Selections

The selection owner will returnalist of zero or moreitemsof thetypeindicated by the property type. In
general, the number of itemsin thelist will correspond to the number of digoint parts of the selection.
Some targets (for example, side-effect targets) will be of length zero irrespective of the number of
digoint selection parts. In the case of fixed-size items, the requestor may determine the number of
items by the property size. Selection property types are listed in the table below. For variable-length
items such as text, the separators are also listed.

Type Atom Format Separ ator
APPLE PICT 8 Self-sizing
ATOM 32 Fixed-size
ATOM_PAIR 32 Fixed-size
BITMAP 32 Fixed-size
C_STRING 8 Zero

COLORMAP 32 Fixed-size
COMPOUND_TEXT 8 Zero

DRAWABLE 32 Fixed-size
INCR 32 Fixed-size
INTEGER 32 Fixed-size
PIXEL 32 Fixed-size
PIXMAP 32 Fixed-size
SPAN 32 Fixed-size
STRING 8 Zero

WINDOW 32 Fixed-size

It is expected that this table will grow over time.

TEXT Properties

In general, the encoding for the charactersin atext string property is specified by itstype. It is highly
desirable for there to be a simple, invertible mapping between string property types and any character
set names embedded within font names in any font naming standard adopted by the Consortium.

Theatom TEXT isapolymorphic target. Requesting conversioninto TEXT will convert into whatever
encoding isconvenient for the owner. Theencoding chosen will beindicated by thetype of the property
returned. TEXT isnot defined asatype; it will never be the returned type from a selection conversion
request.

If the requestor wants the owner to return the contents of the selection in aspecific encoding, it should
request conversion into the name of that encoding.

In the table in the section called “Target Atoms’, the word TEXT (in the Type column) is used to
indicate one of the registered encoding names. The type would not actually be TEXT; it would be
STRING or some other ATOM naming the encoding chosen by the owner.

STRING as atype or atarget specifies the SO Latin-1 character set plus the control characters TAB
(octal 11) and NEWLINE (octal 12). The spacing interpretation of TAB is context dependent. Other
ASCII control characters are explicitly not included in STRING at the present time.

COMPOUND_TEXT as atype or atarget specifies the Compound Text interchange format; see the
Compound Text Encoding.

There are some text objects where the source or intended user, as the case may be, does not have
a specific character set for the text, but instead merely requires a zero-terminated sequence of bytes
with no other restriction; no element of the selection mechanism may assume that any byte value is

17

Peer-to-Peer Communication
by Means of Selections

INCR

forbidden or that any two differing sequences are equivalent. 4 For these objects, thetype C_STRING
should be used.

Rationale

An example of the need for C_STRING is to transmit the names of files; many
operating systems do not interpret filenames as having a character set. For example,
the same character string uses a different sequence of bytesin ASCII and EBCDIC,
and so most operating systems see these as different filenames and offer no way to
treat them as the same. Thus no character-set based property typeis suitable.

Type STRING, COMPOUND_TEXT, and C_STRING properties will consist of alist of elements
separated by null characters; other encodings will need to specify an appropriate list format.

Properties

Reguestors may receive a property of type INCR ° in response to any target that results in selection
data.

This indicates that the owner will send the actual data incrementally. The contents of the INCR
property will be an integer, which represents a lower bound on the number of bytes of data in the
selection. The requestor and the selection owner transfer the data in the selection in the following
manner.

The selection requestor starts the transfer process by deleting the (type==INCR) property forming the
reply to the selection.

The selection owner then:

» Appends the datain suitable-size chunks to the same property on the same window as the selection
reply with a type corresponding to the actual type of the converted selection. The size should be
less than the maximum-request-size in the connection handshake.

» Waits between each append for aPr oper t yNot i f y (state==Deleted) event that shows that the
requestor has read the data. The reason for doing this is to limit the consumption of space in the
server.

» Waits (after the entire data has been transferred to the server) until a PropertyNoti fy
(state==Del eted) event that shows that the data has been read by the requestor and then writes zero-
length data to the property.

The selection requestor:
» Waitsfor the Sel ect i onNoti fy event.
e Loops.
« Retrieving datausing Get Pr oper t y with the delete argument Tr ue.
» Waiting for aPr oper t yNot i f y with the state argument NewVal ue.
» Waits until the property named by the Pr opert yNot i f y event is zero-length.
» Deletes the zero-length property.

The type of the converted selection is the type of the first partial property. The remaining partial
properties must have the same type.

4 Notethat thisisdifferent from STRING, where many byteval uesareforbidden, and from COMPOUND_TEXT, where, for example, inserting
the sequence 27,\ 40,\ 66 (designate ASCI| into GL) at the start does not alter the meaning.

5 These properties were called INCREMENTAL in an earlier draft. The protocol for using them has changed, and so the name has changed
to avoid confusion.

18

Peer-to-Peer Communication
by Means of Selections

DRAWABLE Properties

Requestors may receive properties of type PIXMAP, BITMAP, DRAWABLE, or WINDOW, which
contain an appropriate ID. While information about these drawables is available from the server by
means of the Get Geonet r y request, the following items are not:

 Foreground pixel
» Background pixel
e Colormap ID

In general, requestors converting into targets whose returned type in the table in the section called
“Target Atoms’ is one of the DRAWABLE types should expect to convert also into the following
targets (using the MUL TIPLE mechanism):

» FOREGROUND returns aPIXEL value.
« BACKGROUND returnsaPIXEL value.

* COLORMAP returnsacolormap ID.

SPAN Properties

Properties with type SPAN contain alist of cardinal-pairs with the length of the cardinals determined
by theformat. Thefirst specifiesthe starting position, and the second specifiesthe ending position plus
one. The baseis zero. If they are the same, the span is zero-length and is before the specified position.
The units areimplied by the target atom, such asLINE_NUMBER or CHARACTER_POSITION.

Manager Selections

Certain clients, often called managers, take on responsibility for managing shared resources. A client
that manages a shared resource should take ownership of an appropriate selection, named using
the conventions described in the section called “Naming Conventions’ and the section called
“Discriminated Names’. A client that manages multiple shared resources (or groups of resources)
should take ownership of a selection for each one.

The manager may support conversion of various targets for that selection. Managers are encouraged
to use this technique as the primary means by which clientsinteract with the managed resource. Note
that the conventions for interacting with the window manager predate this section; as a result many
interactions with the window manager use other techniques.

Before a manager takes ownership of a manager selection, it should usethe Get Sel ect i onOaner

request to check whether the selection is already owned by another client, and, where appropriate, it
should ask the user if the new manager should replace the old one. If so, it may then take ownership
of the selection. Managers should acquire the selection using a window created expressly for this
purpose. Managers must conform to the rules for selection owners described in the section called
“Acquiring Selection Ownership” and the section called “Responsibilities of the Selection Owner” ,
and they must also support the required targetslisted in the section called “Use of Selection Atoms”.

If a manager loses ownership of a manager selection, this means that a new manager is taking over
its responsibilities. The old manager must release all resources it has managed and must then destroy
the window that owned the selection. For example, a window manager |osing ownership of WM_S2
must deselect from Subst r uct ur eRedi r ect on the root window of screen 2 before destroying
the window that owned WM _S2.

When the new manager notices that the window owning the selection has been destroyed, it knows
that it can successfully proceed to control the resource it is planning to manage. If the old manager

19

Peer-to-Peer Communication
by Means of Selections

does not destroy the window within a reasonable time, the new manager should check with the user
before destroying the window itself or killing the old manager.

If amanager wantsto give up, on its own, management of a shared resource controlled by a selection,
it must do so by releasing the resources it is managing and then by destroying the window that owns
the selection. It should not first disown the selection, since this introduces a race condition.

Clients who are interested in knowing when the owner of a manager selection is no longer managing
the corresponding shared resource should select for St ruct ur eNot i fy on the window owning
the selection so they can be notified when the window is destroyed. Clients are warned that
after doing a Get Sel ecti onOmer and selecting for St ruct ur eNot i fy, they should do a
CGet Sel ecti onOaner again to ensure that the owner did not change after initially getting the
selection owner and before selecting for St r uct ur eNot i fy.

Immediately after a manager successfully acquires ownership of a manager selection, it should
announce its arrival by sending a Cl i ent Message event. This event should be sent using the
SendEvent protocol request with the following arguments:

Argument Value

destination: the root window of screen
0, or the root window of
the appropriate screen if the
manager is managing a screen-
specific resource

propogate: False
event-mask: StructureNotify
event: Cl i ent Message
type: MANAGER
format: 32
data[0] 2 timestamp
data[1]: manager selection atom
data[2]: the window owning the
selection
data[3]: manager-sel ection-specific data
data[4]: manager-sel ection-specific data

8We use the notation data[n] to indicate the n ™ element of the LISTofINTS, LISTofINT16, or LISTofINT32 in the data field
of thed i ent Message, according to the format field. Thelist isindexed from zero.

Clientsthat wish to know when a specific manager has started should select for St r uct ur eNot i fy
on the appropriate root window and should watch for the appropriate MANAGER O i ent Message.

20

Chapter 3. Peer-to-Peer
Communication by Means of Cut
Buffers

The cut buffer mechanism is much simpler but much less powerful than the selection mechanism. The
selection mechanism is active in that it provides alink between the owner and requestor clients. The
cut buffer mechanism is passive; an owner places datain a cut buffer from which arequestor retrieves
the data at some later time.

The cut buffers consist of eight properties on the root of screen zero, named by the predefined atoms
CUT_BUFFERO to CUT_BUFFER?7. These properties must, at present, have type STRING and
format 8. A client that uses the cut buffer mechanism must initially ensure that all eight properties
exist by using ChangePr oper t y requests to append zero-length data to each.

A client that stores data in the cut buffers (an owner) first must rotate the ring of buffers by plus
1 by using Rot at eProperti es requests to rename each buffer; that is, CUT_BUFFERO to
CUT_BUFFER1, CUT_BUFFER1to CUT_BUFFER?2, ..., and CUT_BUFFER7 to CUT_BUFFERO.
It then must store the data into CUT_BUFFERO by using a ChangePr operty request in mode
Repl ace.

A client that obtains data from the cut buffers should use a Get Pr oper t y request to retrieve the
contents of CUT_BUFFERQO.

In response to a specific user request, a client may rotate the cut buffers by minus 1 by using
Rot at ePr oper ti es requeststo rename each buffer; that is, CUT_BUFFER7 to CUT_BUFFERS,
CUT_BUFFER6 to CUT_BUFFERS, ..., and CUT_BUFFERO to CUT_BUFFER?.

Data should be stored to the cut buffers and the ring rotated only when requested by explicit user
action. Users depend on their mental model of cut buffer operation and need to be able to identify
operations that transfer data to and fro.

21

Chapter 4. Client-to-Window-Manager
Communication

To permit window managers to perform their role of mediating the competing demands for resources
such as screen space, the clients being managed must adhere to certain conventionsand must expect the
window managersto do likewise. These conventions are covered here from the client's point of view.

In general, these conventions are somewhat complex and will undoubtedly change as new window
management paradigms are developed. Thus, there is a strong bias toward defining only those
conventions that are essential and that apply generally to al window management paradigms. Clients
designed to run with a particular window manager can easily define private protocols to add to these
conventions, but they must be aware that their users may decide to run some other window manager
no matter how much the designers of the private protocol are convinced that they have seen the "one
true light" of user interfaces.

Itisaprinciple of these conventions that a general client should neither know nor care which window
manager is running or, indeed, if one is running at all. The conventions do not support al client
functions without a window manager running; for example, the concept of Iconic is not directly
supported by clients. If no window manager isrunning, the concept of | conic does not apply. A goal of
the conventionsisto makeit possibletokill and restart window managerswithout loss of functionality.

Each window manager will implement a particular window management policy; the choice of an
appropriate window management policy for the user's circumstancesis not onefor an individual client
to make but will be made by the user or the user's system administrator. This does not exclude the
possibility of writing clients that use a private protocol to restrict themselves to operating only under
a specific window manager. Rather, it merely ensures that no claim of general utility is made for such
programs.

For example, the claim is often made: "The client I'm writing isimportant, and it needsto be on top."
Perhapsit isimportant when it is being run in earnest, and it should then be run under the control of
awindow manager that recognizes "important” windows through some private protocol and ensures
that they are on top. However, imagine, for example, that the "important” client is being debugged.
Then, ensuring that it is always on top is no longer the appropriate window management policy, and
it should be run under a window manager that allows other windows (for example, the debugger) to
appear on top.

Client's Actions

In general, the object of the X Version 11 design is that clients should, as far as possible, do exactly
what they would do in the absence of awindow manager, except for the following:

* Hinting to the window manager about the resources they would like to obtain

» Cooperating with the window manager by accepting the resources they are alocated even if they
are not those requested

» Being prepared for resource allocations to change at any time

Creating a Top-Level Window

A client's top-level window is awindow whose override-redirect attributeis Fal se. It must either be
achild of aroot window, or it must have been a child of aroot window immediately prior to having
been reparented by the window manager. If the client reparents the window away from the root, the
window is no longer a top-level window; but it can become a top-level window again if the client
reparents it back to the root.

22

Client-to-Window-
Manager Communication

A client usually would expect to create its top-level windows as children of one or more of the root
windows by using some boilerplate like the following:

wi n = XCreateSi npl eW ndow(dpy, Defaul t Root Wndow dpy), xsh.x, xsh.y,
xsh.wi dth, xsh. height, bw, bd, bg);

If a particular one of the root windows was required, however, it could use something like the
following:

wi n = XCreat eSi npl eW ndow(dpy, Root W ndow(dpy, screen), xsh.x, xsh.y,
xsh.w dth, xsh.height, bw, bd, bg);

Ideally, it should be possible to override the choice of aroot window and allow clients (including
window managers) to treat a nonroot window as a pseudo-root. This would allow, for example,
the testing of window managers and the use of application-specific window managers to control
the subwindows owned by the members of arelated suite of clients. Doing so properly requires an
extension, the design of which is under study.

From the client's point of view, the window manager will regard its top-level window as being in one
of three states:

* Normal
* |conic
e Withdrawn

Newly created windows start in the Withdrawn state. Transitions between states happen when the top-
level window is mapped and unmapped and when the window manager receives certain messages.
For further details, see the section called “WM_HINTS Property”. and the section called “ Changing
Window State”.

Client Properties

Once the client has one or more top-level windows, it should place properties on those windows to
inform the window manager of the behavior that the client desires. Window managers will assume
values they find convenient for any of these properties that are not supplied; clients that depend on
particular values must explicitly supply them. The window manager will not change propertieswritten
by the client.

The window manager will examine the contents of these properties when the window makes the
transition from the Withdrawn state and will monitor some propertiesfor changes while thewindow is
in the Iconic or Normal state. When the client changes one of these properties, it must use Repl ace
mode to overwrite the entire property with new data; the window manager will retain no memory
of the old value of the property. All fields of the property must be set to suitable values in a single
Repl ace mode ChangePr opert y request. This ensures that the full contents of the property will
be available to a new window manager if the existing one crashes, if it is shut down and restarted, or
if the session needs to be shut down and restarted by the session manager.

Convention

Clients writing or rewriting window manager properties must ensure that the entire
content of each property remains valid at all times.

Some of these propertiesmay contain the IDs of resources, such aswindowsor pixmaps. Clientsshould
ensure that these resources exist for at |east as long as the window on which the property resides.

If these properties are longer than expected, clients should ignore the remainder of the property.
Extending these propertiesis reserved to the X Consortium; private extensions to them are forbidden.

23

Client-to-Window-
Manager Communication

Private additional communication between clients and window managers should take place using
separate properties. The only exception to this rule is the WM_PROTOCOLS property, which may
be of arbitrary length and which may contain atoms representing private protocols (see the section
caled “WM_PROTOCOLS Property”).

The next sections describe each of the properties the clients need to set, in turn. They are summarized
inthetablein the section called “ Summary of Window Manager Property Types”

WM_NAME Property

The WM_NAME property is an uninterpreted string that the client wants the window manager to
display in association with the window (for example, in awindow headline bar).

The encoding used for this string (and all other uninterpreted string properties) isimplied by the type
of the property. The type atomsto be used for this purpose are described in the section called “TEXT
Properties”.

Window managers are expected to make an effort to display this information. Simply ignoring
WM_NAME is not acceptable behavior. Clients can assume that at |east the first part of thisstring is
visible to the user and that if the information is not visible to the user, it is because the user has taken
an explicit action to make it invisible.

On the other hand, there is no guarantee that the user can see the WM_NAME string even if the
window manager supports window headlines. The user may have placed the headline off-screen or
have covered it by other windows. WM_NAME should not be used for application-critical information
or to announce asynchronous changes of an application's state that require timely user response. The
expected uses are to permit the user to identify one of a number of instances of the same client and
to provide the user with noncritical state information.

Even window managers that support headline bars will place some limit on the length of the
WM_NAME string that can be visible; brevity here will pay dividends.

WM _ICON_NAME Property

The WM_ICON_NAME property is an uninterpreted string that the client wants to be displayed in
association with the window when it is iconified (for example, in an icon label). In other respects,
including the type, it issimilar to WM_NAME. For obvious geometric reasons, fewer characterswill
normally bevisiblein WM_ICON_NAME than WM_NAME.

Clients should not attempt to display this string in their icon pixmaps or windows; rather, they should
rely on the window manager to do so.

WM_NORMAL_HINTS Property

The type of the WM_NORMAL_HINTS property isSWM_SIZE_HINTS. Its contents are as follows:

Field Type Comments

flags CARD32 (see the next table)

pad 4*CARD32 For backwards compatibility
min_width INT32 If missing, assume base_width
min_height INT32 If missing, assume base_height
max_width INT32

max_height INT32

width_inc INT32

height_inc INT32

24

Client-to-Window-
Manager Communication

Field Type Comments
min_aspect (INT32,INT32)
max_aspect (INT32,INT32)
base width INT32 If missing, assume min_width
base height INT32 If missing, assume min_height
win_gravity INT32 If missing, assume

Nor t hWest

The WM_SIZE_HINTS.flags bit definitions are as follows:

Name Value Field

USPosi ti on 1 User-specified x, y

USSi ze 2 User-specified width, height

PPosi tion 4 Program-specified position

PSi ze 8 Program-specified size

PM nSi ze 16 Program-specified minimum
size

PMaxSi ze 32 Program-specified maximum
size

PResi zel nc 64 Program-specified resize
increments

PAspect 128 Program-specified min and max
aspect ratios

PBaseSi ze 256 Program-specified base size

PWnG avity 512 Program-specified window
gravity

To indicate that the size and position of the window (when a transition from the Withdrawn state
occurs) was specified by the user, the client should set the USPosi t i on and USSi ze flags, which
allow awindow manager to know that the user specifically asked where the window should be placed
or how the window should be sized and that further interaction is superfluous. To indicate that it was
specified by the client without any user involvement, the client should set PPosi ti on and PSi ze.

The size specifiers refer to the width and height of the client's window excluding borders.

The win_gravity may be any of the values specified for WINGRAVITY in the core protocol except
for Unnmap: Nor t hWest (1), Nort h (2), Nort hEast (3), West (4), Cent er (5), East (6),
Sout h\West (7), Sout h (8), and Sout hEast (9). It specifies how and whether the client window
wants to be shifted to make room for the window manager frame.

If the win_gravity is St at i ¢, the window manager frame is positioned so that the inside border of
the client window inside the frame is in the same position on the screen as it was when the client
requested thetransition from Withdrawn state. Other values of win_gravity specify awindow reference
point. For Nor t hWest , Nort hEast , Sout hWest , and Sout hEast the reference point is the
specified outer corner of the window (on the outside border edge). For Nor t h, Sout h, East and
West thereference point isthe center of the specified outer edge of the window border. For Cent er

the reference point is the center of the window. The reference point of the window manager frame
is placed at the location on the screen where the reference point of the client window was when the
client requested the transition from Withdrawn state.

The min_width and min_height elements specify the minimum size that the window can be for
the client to be useful. The max_width and max_height elements specify the maximum size. The
base width and base height elements in conjunction with width inc and height inc define an
arithmetic progression of preferred window widths and heights for non-negative integersi and j:

25

Client-to-Window-
Manager Communication

width = base_width + (i x width_inc)
hei ght = base_height + (j x height_inc)

Window managers are encouraged to usei and j instead of width and height in reporting window sizes
to users. If abase sizeis not provided, the minimum sizeisto be used in its place and vice versa.

The min_aspect and max_aspect fields are fractions with the numerator first and the denominator
second, and they allow aclient to specify the range of aspect ratios it prefers. Window managers that
honor aspect ratios should take into account the base size in determining the preferred window size.
If abase size is provided along with the aspect ratio fields, the base size should be subtracted from
the window size prior to checking that the aspect ratio fals in range. If a base size is not provided,
nothing should be subtracted from the window size. (The minimum size is not to be used in place of
the base size for this purpose.)

WM_HINTS Property

The WM_HINTS property (whose type is WM_HINTYS) is used to communicate to the window
manager. It conveys the information the window manager needs other than the window geometry,
which is available from the window itself; the constraints on that geometry, which is available from
the WM_NORMAL_HINTS structure; and various strings, which need separate properties, such as
WM_NAME. The contents of the properties are as follows:

Field Type Comments

flags CARD32 (see the next table)

input CARD32 The client's input model
initial_state CARD32 The state when first mapped
icon_pixmap PIXMAP The pixmap for the icon image
icon_window WINDOW The window for theicon image
icon_Xx INT32 Theicon location

icon_y INT32

icon_mask PIXMAP The mask for theicon shape
window_group WINDOW The ID of the group leader

The WM_HINTS.flags bit definitions are as follows:

window

Name Value Field

I nput Hi nt 1 input

St at eHi nt 2 initial_state

| conPi xmapHi nt 4 icon_pixmap

| conW ndowHi nt 8 icon_window

| conPosi ti onHi nt 16 icon x & icon_y

| conMaskHi nt 32 icon_mask

W ndowG oupHi nt 64 window_group
MessageHi nt 128 (this bit is obsolete)
Ur gencyHi nt 256 urgency

Window managers are free to assume convenient values for all fields of the WM_HINTS property if
awindow is mapped without one.

26

Client-to-Window-
Manager Communication

The input field is used to communicate to the window manager the input focus model used by the
client (see the section called “Input Focus’).

Clientswith the Globally Active and No Input models should set theinput flag to Fal se. Clientswith
the Passive and Locally Active models should set theinput flag to Tr ue.

Fromthe client's point of view, the window manager will regard the client'stop-level window asbeing
in one of three states:

* Normal
* |conic
* Withdrawn

The semantics of these states are described in the section called “ Changing Window State”. Newly
created windows start in the Withdrawn state. Transitions between states happen when a top-level
window is mapped and unmapped and when the window manager receives certain messages.

The value of the initial_state field determines the state the client wishes to be in at the time the top-
level window is mapped from the Withdrawn state, as shown in the following table:

State Value Comments
Normal State 1 The window isvisible
IconicState 3 Theiconisvisible

Theicon_pixmap field may specify a pixmap to be used as an icon. This pixmap should be:

» One of the sizes specified in the WM_ICON_SIZE property on theroot if it exists (see the section
caled “WM_ICON_SIZE Property”).

 1-bit deep. The window manager will select, through the defaults database, suitable background
(for the 0 bits) and foreground (for the 1 bits) colors. These defaults can, of course, specify different
colors for theicons of different clients.

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon, alowing for
icons to appear nonrectangular.

The icon_window field is the ID of a window the client wants used as its icon. Most, but not all,
window managers will support icon windows. Those that do not are likely to have a user interface in
which small windows that behave like icons are completely inappropriate. Clients should not attempt
to remedy the omission by working around it.

Clients that need more capabilities from the icons than a simple 2-color bitmap should use icon
windows. Rules for clientsthat do are set out in the section called “Icons’.

The(icon_x,icon_y) coordinateisahint to the window manager asto whereit should position theicon.
The policies of the window manager control the positioning of icons, so clients should not depend on
attention being paid to this hint.

The window_group field lets the client specify that this window belongs to a group of windows. An
example is asingle client manipulating multiple children of the root window.

Conventions

e Thewindow_group field should be set to the ID of the group leader. The window
group leader may be a window that exists only for that purpose; a placeholder
group leader of this kind would never be mapped either by the client or by the
window manager.

27

Client-to-Window-
Manager Communication

» The properties of the window group leader are those for the group as awhole (for
example, the icon to be shown when the entire group is iconified).

Window managers may provide facilities for manipulating the group as awhole. Clients, at present,
have no way to operate on the group as awhole.

The messages bit, if set intheflagsfield, indicatesthat the client is using an obsol ete window manager
communication protocol, * rather than the WM_PROTOCOLS mechanism of the section called
“WM_PROTOCOLS Property”

TheUr gencyHi nt flag, if setin the flagsfield, indicates that the client deems the window contents
to be urgent, requiring the timely response of the user. The window manager must make some effort
to draw the user's attention to this window while this flag is set. The window manager must also
monitor the state of this flag for the entire time the window isin the Normal or Iconic state and must
take appropriate action when the state of the flag changes. The flag is otherwise independent of the
window's state; in particular, the window manager is not required to deiconify thewindow if the client
sets the flag on an I conic window. Clients must provide some means by which the user can cause the
Ur gencyHi nt flag to be set to zero or the window to be withdrawn. The user's action can either
mitigate the actual condition that made the window urgent, or it can merely shut off the alarm.

Rationale

This mechanism is useful for alarm dialog boxes or reminder windows, in cases
where mapping the window is not enough (e.g., in the presence of multi-workspace
or virtual desktop window managers), and where using an override-redirect window
istoointrusive. For example, the window manager may attract attention to an urgent
window by adding an indicator to its title bar or its icon. Window managers may
also take additional action for awindow that is newly urgent, such as by flashing its
icon (if the window isiconic) or by raising it to the top of the stack.

WM_CLASS Property

The WM_CLASS property (of type STRING without control characters) contains two consecutive
null-terminated strings. These specify the Instance and Class names to be used by both the client and
the window manager for looking up resources for the application or as identifying information. This
property must be present when the window |eaves the Withdrawn state and may be changed only while
the window is in the Withdrawn state. Window managers may examine the property only when they
start up and when the window |eaves the Withdrawn state, but there should be no need for a client
to change its state dynamically.

The two strings, respectively, are:

* A string that names the particular instance of the application to which the client that owns this
window belongs. Resources that are specified by instance name override any resources that are
specified by class name. Instance names can be specified by the user in an operating-system specific
manner. On POSI X-conformant systems, the following conventions are used:

e If "-name NAME" is given on the command line, NAME is used as the instance name.

¢ Otherwisg, if the environment variable RESOURCE_NAME is set, its value will be used as the
instance name.

» Otherwise, the trailing part of the name used to invoke the program (argv[0] stripped of any
directory names) is used as the instance name.

» A string that names the general class of applications to which the client that owns this window
belongs. Resources that are specified by class apply to all applications that have the same class

! This obsolete protocol was described in the July 27, 1988, draft of the ICCCM. Windows using it can also be detected because their
WM_HINTS properties are 4 bytes longer than expected. Window managers are free to support clients using the obsolete protocol in a
backwards compatibility mode.

28

Client-to-Window-
Manager Communication

name. Class names are specified by the application writer. Examples of commonly used class names
include: "Emacs', "XTerm", "XClock", "XLoad", and so on.

Note that WM_CLASS strings are null-terminated and, thus, differ from the general conventions that
STRING properties are null-separated. This inconsistency is necessary for backwards compatibility.

WM_TRANSIENT_FOR Property

The WM_TRANSIENT_FOR property (of type WINDOW) contains the ID of another top-level
window. The implication is that this window is a pop-up on behalf of the named window, and
window managers may decide not to decorate transient windows or may treat them differently in
other ways. In particular, window managers should present newly mapped WM_TRANSIENT_FOR
windows without requiring any user interaction, even if mapping top-level windows normally does
require interaction. Dialogue boxes, for example, are an example of windows that should have
WM_TRANSIENT_FOR set.

It is important not to confuse WM_TRANSIENT_FOR with overrideredirect.
WM_TRANSIENT_FOR should be used in those cases where the pointer is not grabbed while the
window is mapped (in other words, if other windows are allowed to be active whilethetransient isup).
If other windows must be prevented from processing input (for example, when implementing pop-up
menus), use override-redirect and grab the pointer while the window is mapped.

WM_PROTOCOLS Property

The WM_PROTOCOLS property (of type ATOM) is a list of atoms. Each atom identifies a
communication protocol between the client and the window manager in which the client is willing
to participate. Atoms can identify both standard protocols and private protocols specific to individual
window managers.

All the protocolsin which aclient can volunteer to take part involve the window manager sending the
clientad i ent Message event and the client taking appropriate action. For details of the contents
of the event, see the section called “ClientMessage Events’ In each case, the protocol transactions
areinitiated by the window manager.

The WM_PROTOCOLS property is not required. If it is not present, the client does not want to
participate in any window manager protocols.

The X Consortium will maintain a registry of protocols to avoid collisions in the name space. The
following table lists the protocols that have been defined to date.

Protocol Section Purpose
WM_TAKE_FOCUS the section called “Input Assignment of input focus
Focus’
WM_SAVE_YOURSELF Appendix C Save client state request
(deprecated)
WM_DELETE WINDOW the section called “Window Request to delete top-level
Deletion” window

It is expected that this table will grow over time.

WM_COLORMAP_WINDOWS Property

The WM_COLORMAP_WINDOWS property (of type WINDOW) on a top-level window is a list
of the IDs of windows that may need colormaps installed that differ from the colormap of the top-
level window. The window manager will watch this list of windows for changes in their colormap
attributes. The top-level window is aways (implicitly or explicitly) on the watch list. For the details
of this mechanism, see the section called “ Colormaps’

29

Client-to-Window-
Manager Communication

WM_CLIENT_MACHINE Property

The client should set the WM_CLIENT_MACHINE property (of one of the TEXT types) to a string
that forms the name of the machine running the client as seen from the machine running the server.

Window Manager Properties

The properties that were described in the previous section are those that the client is responsible for
maintaining on its top-level windows. This section describes the properties that the window manager
places on client's top-level windows and on the root.

WM_STATE Property

The window manager will place a WM_STATE property (of type WM_STATE) on each top-level
client window that is not in the Withdrawn state. Top-level windows in the Withdrawn state may or
may not have the WM_STATE property. Once the top-level window has been withdrawn, the client
may re-use it for another purpose. Clients that do so should remove the WM_STATE property if it
isstill present.

Some clients (such as xpr op) will ask the user to click over a window on which the program is to
operate. Typically, theintent is for thisto be atop-level window. To find atop-level window, clients
should search thewindow hierarchy beneath the sel ected location for awindow withtheWM_STATE
property. Thissearch must berecursivein order to cover all window manager reparenting possibilities.
If no window withaWM_STATE property is found, it is recommended that programs use a mapped
child-of-root window if oneis present beneath the selected location.

The contents of the WM_STATE property are defined as follows:

Field Type Comments
state CARD32 (see the next table)
icon WINDOW ID of icon window

Thefollowing table liststhe WM_STATE.state values:

State Value
WithdrawnState 0
Normal State 1
|conicState 3

Adding other fields to this property is reserved to the X Consortium. Values for the state field other
than those defined in the above table are reserved for use by the X Consortium.

The state field describes the window manager's idea of the state the window is in, which may not
match the client'sideaas expressed intheinitial_statefield of theWM_HINTS property (for example,
if the user has asked the window manager to iconify thewindow). If itisNor mal St at e, thewindow
manager believesthe client should be animating itswindow. If itisl coni cSt at e, the client should
animate its icon window. In either state, clients should be prepared to handle exposure events from
either window.

When the window is withdrawn, the window manager will either change the state field's value to
W t hdr awnSt at e or it will removethe WM_STATE property entirely.

Theicon field should contain the window 1D of the window that the window manager uses astheicon
for the window on which this property is set. If no such window exists, theicon field should be None.
Note that this window could be but is not necessarily the same window as the icon window that the
client may have specified initsWM_HINTS property. The WM_STATE icon may be awindow that
the window manager has supplied and that contains the client's icon pixmap, or it may be an ancestor
of the client's icon window.

30

Client-to-Window-
Manager Communication

WM_ICON_SIZE Property

A window manager that wishes to place constraints on the sizes of icon pixmaps and/or windows
should place a property called WM _ICON_SIZE on the root. The contents of this property are listed
in the following table.

Field Type Comments

min_width CARD32 The data for the icon size series
min_height CARD32

max_width CARD32

max_height CARD32

width_inc CARD32

height_inc CARD32

For more details see section 14.1.12 in Xlib - C Language X Interface.

Changing Window State

From the client's point of view, the window manager will regard each of the client'stop-level windows
as being in one of three states, whose semantics are as follows:

* Nor mal St at e - Theclient'stop-level window is viewable.

e lconi cStat e - The client's top-level window is iconic (whatever that means for this window
manager). The client can assume that its top-level window is not viewable, its icon_ window (if
any) will be viewable and, failing that, itsicon_pixmap (if any) or its WM_ICON_NAME will be
displayed.

* Wt hdr awnSt at e - Neither the client's top-level window nor itsiconisvisible.

In fact, the window manager may implement states with semantics other than those described above.
For example, a window manager might implement a concept of an "inactive" state in which an
infrequently used client'swindow would be represented as a string in amenu. But thisstateisinvisible
to the client, which would see itself merely as being in the Iconic state.

Newly created top-level windows are in the Withdrawn state. Once the window has been provided
with suitable properties, the client is free to change its state as follows:

» Withdrawn -> Normal - The client should map the window with WM_HINTS.initial_state being
Nor mal St at e.

* Withdrawn -> Iconic - The client should map the window with WM_HINTS.initial_state being
I coni cState.

» Normal -> Iconic - The client should send a Cl i ent Message event as described later in this
section.

e Normal -> Withdrawn - The client should unmap the window and follow it with a synthetic
UnmapNot i fy event asdescribed later in this section.

* Iconic -> Normal - The client should map the window. The contents of WM_HINTS.initial_state
areirrelevant in this case.

* Iconic -> Withdrawn - The client should unmap the window and follow it with a synthetic
UnmapNot i fy event asdescribed later in this section.

Only the client can effect atransition into or out of the Withdrawn state. Once a client's window has
left the Withdrawn state, the window will be mapped if itisinthe Normal state and the window will be

31

Client-to-Window-
Manager Communication

unmapped if it isin the Iconic state. Reparenting window managers must unmap the client's window
whenitisinthelconic state, even if an ancestor window being unmapped renders the client's window
unviewable. Conversely, if a reparenting window manager renders the client's window unviewable
by unmapping an ancestor, the client's window is by definition in the Iconic state and must also be
unmapped.

Adviceto Implementors

Clients can select for St ruct ur eNot i fy on their top-level windows to track
transitions between Normal and Iconic states. Receipt of aMapNot i fy event will
indicate a transition to the Normal state, and receipt of an UnmapNot i fy event
will indicate a transition to the Iconic state.

When changing the state of the window to Withdrawn, the client must (in addition to unmapping the

window) send a synthetic UnnapNot i f y event by using aSendEvent request with the following
arguments:

Argument Value

destination The root

propogate False

event-mask (SubstructureRedirect|

SubstructureNotify)
event: an UnmapNot i fy with:

event: The root
window: The window itself
from-configure: False

Rationale

The reason for requiring the client to send a synthetic UnnmapNoti fy event is
to ensure that the window manager gets some notification of the client's desire to
change state, even though the window may aready be unmapped when the desire
is expressed.

Adviceto Implementors

For compatibility with obsolete clients, window managers should trigger the
transition to the Withdrawn state on the real UnmapNot i fy rather than waiting
for the synthetic one. They should aso trigger the transition if they receive a
synthetic UnmapNot i f y on awindow for which they have not yet received areal
UnmapNot i fy.

When aclient withdraws awindow, the window manager will then update or removethe WM_STATE
property as described in the section called “WM_STATE Property”. Clients that want to re-use a
client window (e.g., by mapping it again or reparenting it elsewhere) after withdrawing it must wait
for the withdrawal to be compl ete before proceeding. The preferred method for doing thisisfor clients
to wait for the window manager to update or remove the WM_STATE property. 2

If the transition is from the Normal to the Iconic state, the client should send aCl i ent Message
event to the root with:

» Window == the window to be iconified

2 Earlier versions of these conventions prohibited clients from reading the WM_STATE property. Clients operating under the earlier
conventions used the technique of tracking Repar ent Not i f y events to wait for the top-level window to be reparented back to the root
window. Thisis still a valid technique; however, it works only for reparenting window managers, and the WM_STATE technique is to be

32

Client-to-Window-
Manager Communication

* Type 3 == the atom WM_CHANGE_STATE
e Format == 32

» Datg[0] == IconicState
Rationale

The format of this O i ent Message event does not match the format of
d i ent Messages in thesection called “ ClientMessage Events’. Thisisbecause
they are sent by the window manager to clients, and this message is sent by clients
to the window manager.

Other values of data]0] are reserved for future extensions to these conventions. The parameters of the
SendEvent request should be those described for the synthetic UnmapNot i fy event.

Adviceto Implementors

Clients can also select for Vi si bi | i t yChange eventson their top-level or icon
windows. They will thenreceiveaVi si bi | i t yNot i fy (state==FullyObscured)
event when the window concerned becomes completely obscured even though
mapped (and thus, perhaps awaste of timeto update) andaVi si bi | i t yNoti fy
(state!=FullyObscured) event when it becomes even partly viewable.

Adviceto Implementors

When a window makes a transition from the Normal state to either the Iconic or
the Withdrawn state, clients should be aware that the window manager may make
transientsfor thiswindow inaccessible. Clients should not rely on transient windows
being available to the user when the transient owner window is not in the Normal
state. When withdrawing a window, clients are advised to withdraw transients for
the window.

Configuring the Window

Clients can resize and reposition their top-level windows by using the Conf i gur eW ndowrequest.
The attributes of the window that can be altered with this request are as follows:

» The[x,y] location of the window's upper |eft-outer corner

» The[width,height] of the inner region of the window (excluding borders)
* The border width of the window

» Thewindow's position in the stack

The coordinate system in which the location is expressed is that of the root (irrespective of any
reparenting that may have occurred). The border width to be used and win_gravity position hint to be
used are those most recently requested by the client. Client configure requests are interpreted by the
window manager in the same manner as the initial window geometry mapped from the Withdrawn
state, as described in the section called “WM_NORMAL_HINTS Property” Clients must be aware
that there is no guarantee that the window manager will allocate them the requested size or location
and must be prepared to deal with any size and location. If the window manager decides to respond
toaConfi gur eRequest request by:

* Not changing the size, location, border width, or stacking order of the window at all.

A client will receive a synthetic Confi gureNoti fy event that describes the (unchanged)
geometry of the window. The (x,y) coordinates will be in the root coordinate system, adjusted

3 The type field of the O i ent Message event (called the message type field by Xlib) should not be confused with the code field of the
event itself, which will havethevalue33(C i ent Message).

33

Client-to-Window-
Manager Communication

for the border width the client requested, irrespective of any reparenting that has taken place.
The border_width will be the border width the client requested. The client will not receive aredl
Confi gur eNot i fy event because no change has actually taken place.

» Moving or restacking the window without resizing it or changing its border width.

A client will receive a synthetic Conf i gur eNot i fy event following the change that describes
the new geometry of the window. The event's (x,y) coordinateswill bein the root coordinate system
adjusted for the border width the client requested. The border_width will be the border width the
client requested. The client may not receive areal Conf i gur eNot i fy event that describes this
change because the window manager may have reparented the top-level window. If the client does
receive areal event, the synthetic event will follow the real one.

* Resizing the window or changing its border width (regardless of whether the window was also
moved or restacked).

A client that hasselected for St r uct ur eNot i f y eventswill receivearea Conf i gur eNoti fy
event. Note that the coordinates in this event are relative to the parent, which may not be the root if
the window has been reparented. The coordinates will reflect the actual border width of the window
(which the window manager may have changed). The Tr ansl| at eCoor di nat es request can be
used to convert the coordinatesif required.

The general ruleisthat coordinatesin real Conf i gur eNot i f y events are in the parent's space; in
synthetic events, they are in the root space.

Adviceto Implementors

Clients cannot distinguish between the case where a top-level window is resized
and moved from the case where the window is resized but not moved, since a
real Confi gureNoti fy event will be received in both cases. Clients that are
concerned with keeping track of the absolute position of atop-level window should
keep a piece of state indicating whether they are certain of its position. Upon receipt
of area Confi gureNoti fy event on the top-level window, the client should
notethat the position isunknown. Upon receipt of asynthetic Conf i gur eNot i fy
event, the client should note the position as known, using the position in this
event. If the client receives a KeyPress, KeyRel ease, ButtonPress,
But t onRel ease, Mbti onNotify,EnterNotify or LeaveNoti fy event
on the window (or on any descendant), the client can deduce the top-level window's
position from the difference between the (event-x, event-y) and (root-x, root-y)
coordinatesin these events. Only when the position is unknown does the client need
to use the Tr ansl at eCoor di nat es request to find the position of a top-level
window.

Clients should be aware that their borders may not be visible. Window managers are free to use
reparenting techniques to decorate client's top-level windows with borders containing titles, controls,
and other details to maintain a consistent look-and-feel. If they do, they are likely to override the
client's attempts to set the border width and set it to zero. Clients, therefore, should not depend on the
top-level window's border being visible or use it to display any critical information. Other window
managers will allow the top-level windows border to be visible.

Convention

Clients should set the desired value of the border-width attribute on all
Conf i gur eW ndow requests to avoid arace condition.

Clientsthat changetheir position in the stack must be aware that they may have been reparented, which
means that windows that used to be siblings no longer are. Using anonsibling as the sibling parameter
on aConf i gur eW ndow request will cause an error.

Convention

Client-to-Window-
Manager Communication

Clientsthat useaConf i gur eW ndowrequest to request achangein their position
in the stack should do so using None in the sibling field.

Clients that must position themselves in the stack relative to some window that was originally a
sibling must do the Conf i gur eW ndow request (in case they are running under a nonreparenting
window manager), be prepared to deal with a resulting error, and then follow with a synthetic
Conf i gur eRequest event by invoking aSendEvent request with the following arguments:

Argument Value
destination Theroot
propogate False
event-mask (SubstructureRedirect|
SubstructureNotify)
event: an Conf i gur eRequest with:
event: The root
window: The window itself

Other parameters from the
ConfigureWindow request

Window managers are in any case free to position windows in the stack as they see fit, and so
clients should not rely on receiving the stacking order they have requested. Clients should ignore the
above-sibling field of both real and synthetic Conf i gur eNot i fy eventsreceived on their top-level
windows because this field may not contain useful information.

Changing Window Attributes

The attributes that may be supplied when a window is created may be changed by using the
ChangeW ndowAt t r i but es request. The window attributes are listed in the following table:

Attribute Privateto Client
Background pixmap Yes
Background pixel Yes
Border pixmap Yes
Border pixel Yes
Bit gravity Yes
Window gravity No
Backing-store hint Yes
Save-under hint No
Event Mask No
Do-not-propagate mask Yes
Override-redirect flag No
Colormap Yes
Cursor Yes

Most attributes are private to the client and will never be interfered with by the window manager. For
the attributes that are not private to the client:

e The window manager is free to override the window gravity; a reparenting window manager may
want to set the top-level window's window gravity for its own purposes.

 Clients are free to set the save-under hint on their top-level windows, but they must be aware that
the hint may be overridden by the window manager.

35

Client-to-Window-
Manager Communication

Input

» Windows, in effect, have per-client event masks, and so, clients may select for whatever events are
convenient irrespective of any events the window manager is selecting for. There are some events
for which only one client at atime may select, but the window manager should not select for them
on any of the client's windows.

* Clients can set override-redirect on top-level windows but are encouraged not to do so except as
described in the section called “Pop-up Windows'. and the section called “ Redirecting Requests”.

Focus

There are four models of input handling:

» Nolnput - Theclient never expectskeyboard input. An examplewould bex| oad or another output-
only client.

» Passive Input - The client expects keyboard input but never explicitly sets the input focus. An
example would be a simple client with no subwindows, which will accept input in Poi nt er Root
mode or when the window manager sets the input focus to its top-level window (in click-to-type
mode).

» Locally Active Input - The client expects keyboard input and explicitly sets the input focus, but it
only does so when one of its windows already has the focus. An example would be a client with
subwindows defining various data entry fields that uses Next and Prev keysto movetheinput focus
between the fields. It does so when its top-level window has acquired the focusin Poi nt er Root
mode or when the window manager sets the input focus to its top-level window (in click-to-type
mode).

» Globally Active Input - The client expects keyboard input and explicitly sets the input focus, even
when it isin windows the client does not own. An example would be a client with a scroll bar that
wants to allow users to scroll the window without disturbing the input focus even if it isin some
other window. It wants to acquire the input focus when the user clicks in the scrolled region but
not when the user clicksin the scroll bar itself. Thus, it wantsto prevent the window manager from
setting the input focus to any of its windows.

The four input models and the corresponding values of the input field and the presence or absence of
the WM_TAKE_FOCUS atom in the WM_PROTOCOLS property are listed in the following table:

Input M odel Input Field WM_TAKE_FOCUS
No Input False Absent
Passive True Absent
Locally Active True Present
Globally Active False Present

Passive and Locally Active clients set the input field of WM_HINTS to Tr ue, which indicates that
they require window manager assistance in acquiring the input focus. No Input and Globally Active
clients set the input field to Fal se, which requests that the window manager not set the input focus
to their top-level window.

Clients that use a Set | nput Focus request must set the time field to the timestamp of the event
that caused them to make the attempt. This cannot be a Focus| n event because they do not have
timestamps. Clients may aso acquire the focus without a corresponding Ent er Not i f y. Note that
clients must not use Cur r ent Ti e inthetimefield.

Clientsusing the Globally Activemodel can only useaSet | nput Focus request to acquiretheinput
focus when they do not already haveit on receipt of one of the following events:

e ButtonPress

* ButtonRel ease

36

Client-to-Window-
Manager Communication

» Passive-grabbed KeyPr ess
» Passive-grabbed KeyRel ease

In general, clients should avoid using passive-grabbed key events for this purpose, except when they
are unavoidable (as, for example, a selection tool that establishes a passive grab on the keys that cut,
copy, or paste).

The method by which the user commands the window manager to set the focus to a window is up
to the window manager. For example, clients cannot determine whether they will see the click that
transfers the focus.

Windows with the atom WM_TAKE_FOCUS in their WM_PROTOCOLS property may receive
a Uient Message event from the window manager (as described in the section called
“ClientMessage Events’.) with WM_TAKE_FOCUS in its data]0] field and a valid timestamp
(i.e., not Current Ti me) in its data[1] field. If they want the focus, they should respond with a
Set | nput Focus request with its window field set to the window of theirs that last had the input
focus or to their default input window, and the time field set to the timestamp in the message. For
further information, see the section called “Input Focus”

A client could receive WM_TAKE_FOCUS when opening from an icon or when the user has clicked
outside the top-level window in an areathat indicates to the window manager that it should assign the
focus (for example, clicking in the headline bar can be used to assign the focus).

The godl is to support window managers that want to assign the input focus to a top-level window in
such away that the top-level window either can assign it to one of its subwindows or can decline the
offer of the focus. For example, a clock or atext editor with no currently open frames might not want
to take focus even though the window manager generaly believes that clients should take the input
focus after being deiconified or raised.

Clientsthat set the input focus need to decide avalue for the revert-to field of the Set | nput Focus
request. This determines the behavior of the input focus if the window the focus has been set to
becomes not viewable. The value can be any of the following:

» Par ent -Ingenera, clientsshould usethisvalue when assigning focusto one of their subwindows.
Unmapping the subwindow will cause focus to revert to the parent, which is probably what you
want.

» Poi nt er Root - Using this vaue with a click-to-type focus management policy leads to race
conditions because the window becoming unviewable may coincide with the window manager
deciding to move the focus elsewhere.

* None - Using this value causes problems if the window manager reparents the window, as most
window managers will, and then crashes. The input focus will be None, and there will probably
be no way to changeit.

Note that neither Poi nt er Root nor None isrealy safe to use.

Convention

Clients that invoke a Set | nput Focus request should set the revert-to argument
to Par ent .

A convention is aso required for clients that want to give up the input focus. There is no safe value
set for them to set the input focus to; therefore, they should ignore input material .

Convention

Clients should not give up theinput focus of their own valition. They should ignore
input that they receive instead.

37

Client-to-Window-
Manager Communication

Colormaps

The window manager isresponsible for installing and uninstalling colormaps on behalf of clientswith
top-level windows that the window manager manages.

Clients provide the window manager with hints as to which colormapsto install and uninstall. Clients
must not install or uninstall colormaps themselves (except under the circumstances noted below).
When a client's top-level window gets the colormap focus (as a result of whatever colormap focus
policy is implemented by the window manager), the window manager will ensure that one or more
of the client's colormaps are installed.

Clients whose top-level windows and subwindows all use the same colormap should set
its ID in the colormap field of the top-level window's attributes. They should not set a
WM_COLORMAP_WINDOWS property on the top-level window. If they want to change the
colormap, they should change the top-level window's colormap attribute. The window manager will
track changes to the window's colormap attribute and install colormaps as appropriate.

Clientsthat create windows can use the value Copy Fr onPar ent to inherit their parent's colormap.
Window managers will ensure that the root window's colormap field contains a colormap that is
suitable for clients to inherit. In particular, the colormap will provide distinguishable colors for
Bl ackPi xel and Wi t ePi xel .

Top-level windows that have subwindows or override-redirect pop-up windows whose colormap
requirements differ from the top-level window should have a WM_COLORMAP_WINDOWS
property. This property contains a list of IDs for windows whose colormaps the window manager
should attempt to have installed when, in the course of itsindividual colormap focus policy, it assigns
the colormap focusto the top-level window (see the section called “WM_COLORMAP_WINDOWS
Property”). Thelist is ordered by the importance to the client of having the colormaps installed. The
window manager will track changes to this property and will track changes to the colormap attribute
of the windows in the property.

If the relative importance of colormaps changes, the client should update the
WM_COLORMAP_WINDOWS property to reflect the new ordering. If the top-level window does
not appear in the list, the window manager will assume it to be of higher priority than any window
inthelist.

WM_TRANSIENT_FOR windows can either have their own WM_COLORMAP_WINDOWS
property or appear in the property of the window they are transient for, as appropriate.

Rationale

An dternative design was considered for how clients should hint to the window
manager about their colormap requirements. This alternative design specified alist
of colormaps instead of alist of windows. The current design, a list of windows,
was chosen for two reasons. First, it allows window managers to find the visuals
of the colormaps, thus permitting visual-dependent colormap installation policies.
Second, it allows window managers to select for Vi si bi | i t yChange events
on the windows concerned and to ensure that colormaps are only installed if the
windows that need them are visible. The alternative design alows for neither of
these policies.

Adviceto Implementors

Clients should be aware of the min-installed-maps and max-installed-maps fields
of the connection setup information, and the effect that the minimum value
has on the "required list" defined by the Protocol in the description of the
I nst al | Col or map request. Briefly, the min-installed-maps most recently
installed maps are guaranteed to beinstalled. Thisvalueisoften one; clientsneeding
multiple colormaps should beware.

38

Client-to-Window-
Manager Communication

Whenever possible, clients should use the mechanisms described above and let the window manager
handle colormap installation. However, clients are permitted to perform colormap installation on their
own while they have the pointer grabbed. A client performing colormap installation must notify the
window manager prior to the first installation. When the client has finished its colormap installation,
it must also notify the window manager. The client notifies the window manager by issuing a
SendEvent request with the following arguments:

Argument Value
destination The root window of the screen
on which the colormap is
installed
propogate False
event-mask ColormapChange
event: and i ent Message with:
window: The root window, as above
type: WM_COLORMAP_NOTIFY
format 32
data[0] the timestampe of the event that

caused the client to start or stop
installing colormaps

data[1] 1if the client is starting
colormap installation, O if the
client is finished with colormap

installation
data[2] reserved, must be zero
data[3] reserved, must be zero
data[4] reserved, must be zero

This feature was introduced in version 2.0 of this document, and there will be a significant period of
time before all window managers can be expected to implement this feature. Before using thisfeature,
clients must check the compliance level of the window manager (using the mechanism described in
the section called “ Communication with the Window Manager by Means of Selections”) to verify that
it supports this feature. This is necessary to prevent colormap installation conflicts between clients
and older window managers.

Window managers should refrain from installing colormaps while a client has requested control of
colormap installation. The window manager should continue to track the set of installed colormaps so
that it can reinstate its colormap focus policy when the client has finished colormap installation.

This technique has race conditions that may result in the colormaps continuing to be installed even
after aclient has issued its notification message. For example, the window manager may have issued
some | nst al | Col or map requests that are not executed until after the client's SendEvent and
I nst al | Col or map requests, thus uninstalling the client's colormaps. If this occurs while the client
till has the pointer grabbed and before the client has issued the "finished" message, the client may
reinstall the desired colormaps.

Adviceto Implementors

Clients are expected to use this mechanism for things such as pop-up windows and
for animations that use override-redirect windows.

If aclient fails to issue the "finished" message, the window manager may be left
in a state where its colormap installation policy is suspended. Window manager
implementors may want to implement a feature that resets colormap installation
policy in response to a command from the user.

39

Client-to-Window-
Manager Communication

Ilcons

A client can hint to the window manager about the desired appearance of itsicon by setting:
* A stringin WM_ICON_NAME.

 All clients should do this because it provides a fallback for window managers whose ideas about

icons differ widely from those of the client.

A Pi xmap into the icon_pixmap field of the WM_HINTS property and possibly another into the
icon_mask field.

The window manager is expected to display the pixmap masked by the mask. The pixmap should
be one of the sizesfound inthe WM_ICON_SIZE property on theroot. If this property is not found,
the window manager isunlikely to display icon pixmaps. Window managers usually will clip or tile
pixmaps that do not match WM_ICON_SIZE.

A window into theicon_window field of the WM_HINTS property.

The window manager is expected to map that window whenever the client isin the Iconic state. In
general, the size of the icon window should be one of those specified in WM _ICON_SIZE on the
root, if it exists. Window managers are free to resize icon windows.

In the I conic state, the window manager usually will ensure that:
 If thewindow's WM_HINTS.icon_window is set, the window it namesisvisible.

* If thewindow's WM_HINTS.icon_window is not set but the window's WM_HINTS.icon_pixmap

is set, the pixmap it namesisvisible.

e Otherwise, the window's WM_ICON_NAME string isvisible.

Clients should observe the following conventions about their icon windows:

Conventions
» Theicon window should be an | nput Qut put child of the root.

e Theicon window should be one of the sizes specified in the WM _ICON_SIZE
property on the root.

» Theicon window should use the root visual and default colormap for the screen
in question.

* Clients should not map their icon windows.
* Clients should not unmap their icon windows.
* Clients should not configure their icon windows.

» Clients should not set override-redirect on their icon windows or select for
Resi zeRedi r ect eventson them.

* Clients must not depend on being able to receive input events by means of their
icon windows.

* Clients must not manipulate the borders of their icon windows.

» Clients must select for Exposur e events on their icon window and repaint it
when reguested.

40

Client-to-Window-
Manager Communication

Window managers will differ as to whether they support input events to client's icon windows; most
will allow the client to receive some subset of the keys and buttons.

Window managers will ignore any WM_NAME, WM_ICON_NAME,
WM_NORMAL_HINTS, WM_HINTS, WM_CLASS, WM_TRANSIENT_FOR,
WM_PROTOCOLS, WM_COLORMAP_WINDOWS, WM_COMMAND, or

WM_CLIENT_MACHINE properties they find on icon windows.
Pop-up Windows
Clients that wish to pop up awindow can do one of three things:

» They can create and map another normal top-level window, which will get decorated and managed
as normal by the window manager. See the discussion of window groups that follows.

* |If thewindow will be visible for arelatively short time and deserves a somewhat lighter treatment,
they can set the WM_TRANSIENT_FOR property. They can expect less decoration but can set al
the normal window manager properties on the window. An example would be a dialog box.

* If thewindow will be visible for avery short time and should not be decorated at all, the client can
set override-redirect on the window. In general, this should be done only if the pointer is grabbed
while the window is mapped. The window manager will never interfere with these windows, which
should be used with caution. An example of an appropriate use is a pop-up menu.

Adviceto Implementors

The user will not be able to move, resize, restack, or transfer the input focus to
override-redirect windows, since the window manager is not managing them. If itis
necessary for a client to receive keystrokes on an override-redirect window, either
the client must grab the keyboard or the client must have another top-level window
that is not override-redirect and that has selected the Locally Active or Globally
Active focus model. The client may set the focus to the override-redirect window
when the other window receives a WM_TAKE_FOCUS message or one of the
eventslisted in the section called “Input Focus’ in the description of the Globally
Active focus model.

Window managers are free to decide if WM_TRANSIENT_FOR windows should be iconified when
the window they are transient for is. Clients displaying WM_TRANSIENT_FOR windows that have
(or request to have) the window they are transient for iconified do not need to request that the same
operation be performed on the WM_TRANSIENT_FOR window; the window manager will change
its state if that isthe policy it wishes to enforce.

Window Groups

A set of top-level windows that should be treated from the user's point of view asrelated (even though
they may belong to a number of clients) should be linked together using the window_group field of
the WM_HINTS structure.

One of the windows (that is, the one the others point to) will be the group leader and will carry the
group asopposed to theindividual properties. Window managers may treat the group leader differently
from other windows in the group. For example, group leaders may have the full set of decorations,
and other group members may have arestricted set.

It is not necessary that the client ever map the group leader; it may be a window that exists solely
as aplaceholder.

It isup to the window manager to determinethe policy for treating the windowsin agroup. At present,
there is no way for aclient to request a group, as opposed to an individual, operation.

41

Client-to-Window-
Manager Communication

Client Responses to Window Manager
Actions

The window manager performs a number of operations on client resources, primarily on their top-
level windows. Clients must not try to fight this but may elect to receive notification of the window
manager's operations.

Reparenting

Clients must be aware that some window managers will reparent their top-level windows so that a
window that was created as a child of the root will be displayed as a child of some window belonging
to the window manager. The effects that this reparenting will have on the client are as follows:

» The parent value returned by a Quer yTr ee request will no longer be the value supplied to the
Cr eat eW ndowrequest that created the reparented window. There should be no need for theclient
to be aware of the identity of the window to which the top-level window has been reparented. In
particular, a client that wishes to create further top-level windows should continue to use the root
asthe parent for these new windows.

e Theserver will interpret the (x,y) coordinatesinaConf i gur eW ndowrequest in the new parent's
coordinate space. In fact, they usually will not be interpreted by the server because a reparenting
window manager usually will haveintercepted these operations (see the section called “ Redirection
of Operations’). Clients should use the root coordinate space for these requests (see the section
called “ Configuring the Window”).

e Confi gur eW ndow requests that name a specific sibling window may fail because the window
named, which used to be a sibling, no longer is after the reparenting operation (see the section
called “ Configuring the Window”).

» The(x,y) coordinatesreturned by aGet Geonet r y request arein the parent's coordinate space and
are thus not directly useful after areparent operation.

A background of Par ent Rel at i ve will have unpredictable results.
» A cursor of None will have unpredictable results.

Clients that want to be notified when they are reparented can select for St r uct ur eNot i f y events
on their top-level window. They will receive a Repar ent Not i fy event if and when reparenting
takes place. When a client withdraws a top-level window, the window manager will reparent it back
to the root window if the window had been reparented el sewhere.

If the window manager reparents a client's window, the reparented window will be placed in the save-
set of the parent window. This means that the reparented window will not be destroyed if the window
manager terminates and will be remapped if it was unmapped. Note that this applies to al client
windows the window manager reparents, including transient windows and client icon windows.

Redirection of Operations

Clients must be aware that some window managers will arrange for some client requests to be
intercepted and redirected. Redirected requests are not executed; they result instead in events being
sent to the window manager, which may decide to do nothing, to alter the arguments, or to perform
the request on behalf of the client.

Thepossibility that arequest may be redirected meansthat aclient cannot assumethat any redirectable
request is actually performed when the request isissued or is actually performed at al. The requests
that may be redirected are MapW ndow, Conf i gur eW ndow, and G r cul at eW ndow.

42

Client-to-Window-
Manager Communication

Adviceto Implementors

Thefollowing isincorrect because the MapW ndowrequest may beintercepted and
the Pol yLi ne output made to an unmapped window:

MapW ndow A
Pol yLi ne A GC <poi nt> <point> ...

The client must wait for an Expose event before drawing in the window. 4

This next example incorrectly assumes that the Conf i gur eW ndow request is
actually executed with the arguments supplied:

Conf i gur eW ndow wi dt h=N hei ght =M
<out put assum ng wi ndow is N by M

The client should select for St r uct ur eNot i f y on its window and monitor the
window's size by tracking Conf i gur eNot i f y events.

Clients must be especially careful when attempting to set the focusto awindow that
they have just mapped. This sequence may result in an X protocol error:

MapW ndow B
Set | nput Focus B

If the MapW ndowreguest has been intercepted, the window will still be unmapped,
causing the Set | nput Focus request to generate the error. The solution to this
problem is for clients to select for Vi si bi | i t yChange on the window and to
delay the issuance of the Set | nput Focus request until they have received a
Vi si bilityNotify eventindicating that the window isvisible.

Thistechnique does not guarantee correct operation. The user may haveiconified the
window by thetimethe Set | nput Focus request reachesthe server, still causing
an error. Or the window manager may decide to map the window into Iconic state,
in which case the window will not be visible. This will delay the generation of the
Vi si bilityNotify eventindefinitely. Clientsmust be prepared to handle these
Cases.

A window with the override-redirect bit set isimmune from redirection, but the bit should be set on
top-level windows only in cases where other windows should be prevented from processing input
while the override-redirect window is mapped (see the section called “ Pop-up Windows”) and while
responding to Resi zeRequest events (see the section called “Redirecting Requests’).

Clients that have no non-Withdrawn top-level windows and that map an override-redirect top-level
window are taking over total responsibility for the state of the system. It is their responsibility to:

» Prevent any preexisting window manager from interfering with their activities

» Restorethestatus quo exactly after they unmap the window so that any preexisting window manager
does not get confused

In effect, clients of this kind are acting as temporary window managers. Doing so is strongly
discouraged because these clients will be unaware of the user interface policies the window manager
is trying to maintain and because their user interface behavior is likely to conflict with that of less
demanding clients.

4 Thisis true even if the client set the backing-store attribute to Al way's. The backing-store attribute is a only ahint, and the server may stop
maintaining backing store contents at any time.

43

Client-to-Window-
Manager Communication

Window Move

If the window manager moves a top-level window without changing its size, the client will receive a
synthetic Conf i gur eNot i f y event following the move that describes the new location in terms of
theroot coordinate space. Clients must not respond to being moved by attempting to move themselves
to a better location.

Any real Confi gureNot i fy event on atop-level window implies that the window's position on
the root may have changed, even though the event reports that the window's position in its parent is
unchanged because the window may have been reparented. Note that the coordinatesin the event will
not, in this case, be directly useful.

The window manager will send these events by using a SendEvent request with the following
arguments:

Argument Value

destination The client's window
propagate False

event-mask StructureNotify

Window Resize

The client can elect to receive notification of being resized by selecting for St ruct ur eNot i fy
events on its top-level windows. It will receive a Conf i gur eNot i fy event. The size information
in the event will be correct, but the location will be in the parent window (which may not be the root).

The response of the client to being resized should be to accept the size it has been given and to do its
best with it. Clients must not respond to being resized by attempting to resize themselves to a better
size. If the size isimpossible to work with, clients are free to request to change to the Iconic state.

Iconify and Deiconify

A top-level window that is not Withdrawn will bein the Normal stateif it is mapped and in the Iconic
stateif it isunmapped. Thiswill betrue even if the window has been reparented; the window manager
will unmap the window as well asits parent when switching to the Iconic state.

The client can elect to be notified of these state changes by selecting for St ruct ureNoti fy
events on the top-level window. It will receive a UnmapNot i fy event when it goes Iconic and a
MapNot i fy event when it goes Normal.

Colormap Change

Input

Clients that wish to be notified of their colormaps being installed or uninstalled should select
for Col or mapNoti fy events on their top-level windows and on any windows they have
named in WM_COLORMAP_WINDOWS properties on their top-level windows. They will receive
Col or mapNot i f y eventswith the new field FAL SE when the colormap for that window isinstalled
or uninstalled.

Focus

Clients can request notification that they have the input focus by selecting for Focus Change events
ontheir top-level windows; they will receive Focus| nand FocusQut events. Clientsthat need to set
theinput focusto one of their subwindows should not do so unlessthey have set WM_TAKE_FOCUS
intheir WM_PROTOCOLS property and have done one of the following:

44

Client-to-Window-
Manager Communication

e Set theinput field of WM_HINTS to Tr ue and actually have the input focus in one of their top-
level windows

» Settheinput field of WM_HINTSto Fal se and have received a suitable event as described in the
section called “Input Focus’.

» HavereceivedaWM_TAKE_FOCUS message as described in the section called “Input Focus’.

Clients should not warp the pointer in an attempt to transfer the focus; they should set the focus and
leave the pointer alone. For further information, see the section called “ The Pointer”.

Once a client satisfies these conditions, it may transfer the focus to another of its windows by using
the Set | nput Focus request, which is defined as follows:

Set | nput Focus
focus. WINDOW or Pointer Root or None

revert-to: { Parent, Pointer Root, None }
time: TIMESTAMP or CurrentTime

Conventions

e Clientsthat use a Set | nput Focus request must set the time argument to the
timestamp of the event that caused them to make the attempt. This cannot be a
Focusl n event because they do not have timestamps. Clients may also acquire
the focus without a corresponding Ent er Not i f y event. Clients must not use
Cur r ent Ti e for the time argument.

» Clients that use a Set | nput Focus request to set the focus to one of their
windows must set the revert-to field to Par ent .

ClientMessage Events

Thereis no way for clientsto prevent themselves being sent Cl i ent Message events.

Top-level windows with a WM_PROTOCOLS property may be sent O i ent Message events
specific to the protocols named by the atoms in the property (see the section caled
“WM_PROTOCOLS Property”). For all protocols, theC i ent Message eventshavethefollowing:

* WM_PROTOCOLS asthe typefield

Format 32

The atom that names their protocol in the data[Q] field
» A timestamp in their data[1] field
The remaining fields of the event, including the window field, are determined by the protocol.

These events will be sent by using a SendEvent request with the following arguments:

Argument Value

destination The client's window
propagate False

event-mask () empty

event As specified by the protocol

45

Client-to-Window-
Manager Communication

Window Deletion

Clients, usually those with multiple top-level windows, whose server connection must survive the
deletion of some of their top-level windows, should include the atom WM_DELETE_WINDOW in
theWM_PROTOCOL S property on each such window. They will receivead i ent Message event
as described above whose data[0] fieldisWM_DELETE_WINDOW.

ClientsreceivingaWM_DELETE_WINDOW message should behave asif the user selected "delete
window" from a hypothetical menu. They should perform any confirmation dialog with the user and,
if they decide to complete the deletion, should do the following:

* Either change the window's state to Withdrawn (as described in the section called “Changing
Window State”) or destroy the window.

» Destroy any internal state associated with the window.
If the user aborts the deletion during the confirmation dial og, the client should ignore the message.

Clients are permitted to interact with the user and ask, for example, whether afile associated with the
window to be deleted should be saved or the window deletion should be cancelled. Clients are not
required to destroy the window itself; the resource may be reused, but all associated state (for example,
backing store) should be released.

If the client aborts a destroy and the user then selects DELETE WINDOW again, the window
manager should start the WM_DELETE_WINDOW protocol again. Window managers should
not use DestroyW ndow requests on a window that has WM_DELETE_WINDOW in its
WM_PROTOCOLS property.

Clientsthat choosenottoincludeWM_DELETE_WINDOW intheWM_PROTOCOL S property may
be disconnected from the server if the user asksfor one of the client'stop-level windowsto be del eted.

Redirecting Requests

Normal clients can use the redirection mechanism just as window managers do by selecting for
Subst ruct ur eRedi r ect eventsonaparent window or Resi zeRedi r ect eventsonawindow
itself. However, at most, one client per window can select for these events, and a convention is needed
to avoid clashes.

Convention

Clients (including window managers) should select for
Subst ruct ur eRedi rect and Resi zeRedi rect events only on windows
that they own.

In particular, clients that need to take some special action if they are resized can select for
Resi zeRedi r ect eventsontheir top-level windows. They will receiveaResi zeRequest event
if the window manager resizes their window, and the resize will not actually take place. Clients are
free to make what use they like of the information that the window manager wants to change their
size, but they must configure the window to the width and height specified in the event in atimely
fashion. To ensure that the resize will actually happen at this stage instead of being intercepted and
executed by the window manager (and thus restarting the process), the client needs temporarily to set
override-redirect on the window.

Convention
Clientsreceiving Resi zeRequest events must respond by doing the following:

* Setting override-redirect on the window specified in the event

46

Client-to-Window-
Manager Communication

 Configuring the window specified in the event to the width and height specified
in the event as soon as possible and before making any other geometry requests

* Clearing override-redirect on the window specified in the event

If awindow manager detects that a client is not obeying this convention, it is free to take whatever
measures it deems appropriate to deal with the client.

Communication with the Window Manager by
Means of Selections

For each screen they manage, window managerswill acquire ownership of aselection named WM_Sn,
where n is the screen number, as described in the section called “Discriminated Names” Window
managers should comply with the conventions for "Manager Selections’ described in the section
called “Manager Selections’. Theintent isfor clients to be able to request a variety of information or
serviceshby issuing conversion requests on this selection. Window managers should support conversion
of the following target on their manager selection:

Atom Type Data Received

VERSION INTEGER Two integers, which are the
major and minor release
numbers (respectively) of the
ICCCM with which the window
manager complies. For this
version of the ICCCM, the
numbersare 2 and 0. 2

8 As a special case, clients not wishing to implement a selection request may simply issue a Get Sel ect i onOaner request
on the appropriate WM_Sn selection. If this selection is owned, clients may assume that the window manager complies with
ICCCM version 2.0 or later.

Summary of Window Manager Property
Types

The window manager properties are summarized in the following table (see also section 14.1 of Xlib
- C Language X Interface).

Name Type Format See Section

WM_CLASS STRING 8 the section called
“WM_CLASS
Property”
WM_CLIENT_MACHINEXT the section called
“WM_CLIENT_MACHINE
Property”
WM_COLORMAP_WINBDIIEW 32 the section called
“WM_COLORMAP_WINDOWS
Property”
WM_HINTS WM_HINTS 32 the section called
“WM_HINTS
Property”
WM_ICON_NAME TEXT the section called
“WM_ICON_NAME
Property”

47

Client-to-Window-
Manager Communication

Name Type Format
WM_ICON_SIZE WM_ICON_SIZE 32

WM_NAME TEXT

WM_NORMAL_HINTSWM_SIZE_HINTS 32

WM_PROTOCOLS ATOM 32
WM_STATE WM_STATE 32
WM_TRANSIENT_FORNINDOW 32

See Section

the section called
“WM_ICON_SIZE
Property”

the section called
“WM_NAME

Property”

the section called
“WM_NORMAL_HINTS
Property”

the section called
“WM_PROTOCOLS
Property”

the section called
“WM_STATE

Property”

the section called
“WM_TRANSIENT_FOR
Property”

48

Chapter 5. Session Management and
Additional Inter-Client Exchanges

This section contains some conventions for clients that participate in session management. See X
Session Management Protocol for further details. Clients that do not support this protocol cannot
expect their window state (e.g., WM _STATE, position, size, and stacking order) to be preserved across
sessions.

Client Support for Session Management

Each session participant will obtain a unique client identifier (client-1D) from the session manager.
The client must identify one top-level window as the "client leader." Thiswindow must be created by
the client. It may bein any state, including the Withdrawn state. The client leader window must have
a SM_CLIENT_ID property, which contains the client-ID obtained from the session management
protocol. That property must:

* Beof type STRING
* Beof format 8
» Contain the client-1D as a string of XPCS characters encoded using 1SO 8859-1

All top-level, nontransient windows created by a client on the same display as the client |eader
must have aWM_CLIENT_LEADER property. This property contains a window ID that identifies
the client leader window. The client leader window must have aWM_CLIENT_LEADER property
containing its own window ID (i.e., the client leader window is pointing to itself). Transient windows
need not have aWM_CLIENT_LEADER property if the client leader can be determined using the
information in the WM_TRANSIENT_FOR property. The WM_CLIENT_LEADER property must:

» Beof type WINDOW
* Beof format 32
» Contain the window ID of the client leader window

A client must withdraw all of its top-level windows on the same display before modifiying either the
WM_CLIENT_LEADER or the SM_CLIENT_ID property of its client leader window.

It is necessary that other clients be able to uniquely identify a window (across sessions) among all
windows related to the same client-ID. For example, a window manager can require this unique ID
to restore geometry information from a previous session, or a workspace manager could use it to
restore information about which windows are in which workspace. A client may optionally provide
aWM_WINDOW_ROLE property to uniquely identify a window within the scope specified above.
The combination of SM_CLIENT_ID and WM_WINDOW _ROLE can be used by other clients to
uniquely identify awindow across sessions.

If the WM_WINDOW_ROLE property is not specified on atop-level window, a client that needs to
uniquely identify that window will try to use instead the values of WM_CLASS and WM_NAME. If
aclient has multiple windows with identical WM_CLASS and WM_NAME properties, then it should
provideaWM_WINDOW _ROLE property.

The client must set the WM_WINDOW_ROLE property to a string that uniquely identifies that
window among all windows that have the same client leader window. The property must:

* Beof type STRING

» Beof format 8

49

Session Management and
Additional Inter-Client Exchanges

» Contain astring restricted to the XPCS characters, encoded in 1SO 8859-1

Window Manager Support for Session
Management

A window manager supporting session management must register with the session manager and obtain
itsown client-1D. The window manager should save and restoreinformation such asthe WM _STATE,
the layout of windows on the screen, and their stacking order for every client window that hasavalid
SM_CLIENT_ID property (on itself, or on the window named by WM_CLIENT_L EADER) and that
can be uniquely identified. Clients are allowed to change this state during the first phase of the session
checkpoint process. Therefore, window managers should request a second checkpoint phase and save
clients' state only during that phase.

Support for ICE Client Rendezvous

The Inter-Client Exchange protocol (ICE) defined as of X11R6 specifies a generic communication
framework, independent of the X server, for data exchange between arbitrary clients. | CE also defines
a protocol for any two ICE clients who also have X connections to the same X server to locate
(rendezvous with) each other.

This protocol, caled the "ICE X Rendezvous' protocol, is defined in the ICE specification,
Appendix B, and uses the property ICE_PROTOCOLS plusCl i ent Message events. Refer to that
specification for complete details.

50

Chapter 6. Manipulation of Shared
Resources

X Version 11 permits clients to manipulate anumber of shared resources, for example, theinput focus,
the pointer, and colormaps. Conventions are required so that clients share resources in an orderly
fashion.

The Input Focus

Clients that explicitly set the input focus must observe one of two modes:
* Locally active mode

 Globally active mode

Conventions

 Locdly active clientsshould set theinput focusto one of their windowsonly when
itisalready in one of their windows or when they receiveaWM_TAKE_FOCUS
message. They should set the input field of the WM_HINTS structureto Tr ue.

» Globally active clients should set the input focus to one of their windows only
when they receive a button event and a passive-grabbed key event, or when they
receive a WM_TAKE_FOCUS message. They should set the input field of the
WM_HINTS structure to Fal se.

* In addition, clients should use the timestamp of the event that caused them to
attempt to set the input focus asthe timefield onthe Set | nput Focus reguest,
not Cur r ent Ti ne.

The Pointer

In general, clients should not warp the pointer. Window managers, however, may do so (for example,
to maintain theinvariant that the pointer is awaysin the window with the input focus). Other window
managers may want to preserve theillusion that the user isin sole control of the pointer.

Conventions
* Clients should not warp the pointer.

 Clientsthat insist on warping the pointer should do so only with the src-window
argument of the War pPoi nt er request set to one of their windows.

Grabs

A client's attempt to establish a button or a key grab on a window will fail if some other client has
already established a conflicting grab on the same window. The grabs, therefore, are shared resources,
and their use requires conventions.

In conformance with the principle that clients should behave, as far as possible, when a window
manager is running as they would when it is not, a client that has the input focus may assume that it
can receive all the available keys and buttons.

Convention

51

Manipulation of Shared Resources

Window managers should ensure that they provide some mechanism for their clients
to receive events from all keys and all buttons, except for events involving keys
whose KeySyms are registered as being for window management functions (for
example, a hypothetical WINDOW KeySym).

In other words, window managers must provide some mechanism by which aclient can receive events
from every key and button (regardless of modifiers) unless and until the X Consortium registers some
KeySyms as being reserved for window management functions. Currently, no KeySymsare registered
for window management functions.

Even so, clients are advised to alow the key and button combinations used to elicit program actions
to be modified, because some window managers may choose not to observe this convention or may
not provide a convenient method for the user to transmit events from some keys.

Convention
Clients should establish button and key grabs only on windows that they own.

In particular, this convention means that a window manager that wishes to establish a grab over the
client's top-level window should either establish the grab on the root or reparent the window and
establish the grab on a proper ancestor. In some cases, a window manager may want to consume the
event received, placing the window in a state where a subsequent such event will go to the client.
Examples are:

 Clicking in awindow to set focus with the click not being offered to the client
* Clicking in aburied window to raiseit, again, with the click not offered to the client

More typically, a window manager should add to, rather than replace, the client's semantics for key
+button combinations by allowing the event to be used by the client after the window manager is
done with it. To ensure this, the window manager should establish the grab on the parent by using
the following:

poi nt er/ keyboar d- node == Synchr onous

Then, the window manager should release the grab by using an Al | owEvent s request with the
following specified:

node == Repl ayPoi nt er/ Keyboard
In thisway, the client will receive the events asif they had not been intercepted.

Obviously, these conventions place some constraints on possible user interface policies. There is a
trade-off here between freedom for window managers to implement their user interface policies and
freedom for clients to implement theirs. The dilemmais resolved by:

 Allowing window managers to decide if and when a client will receive an event from any given
key or button

* Placing arequirement on the window manager to provide some mechanism, perhapsa"Quote" key,
by which the user can send an event from any key or button to the client

Colormaps

the section called “ Colormaps’ prescribes conventions for clients to communicate with the window
manager about their colormap needs. If your clientsareDi r ect Col or type applications, you should
consult section 14.3 of Xlib - C Language X Interface for conventions connected with sharing standard
colormaps. They should look for and create the properties described there on the root window of the
appropriate screen.

52

Manipulation of Shared Resources

The contents of the RGB_COLOR_MAP type property are asfollows:

Field Type Comments

colormap COLORMAP ID of the colormap described

red_max CARD32 Values for pixel calculations

red_mult CARD32

green_max CARD32

green_mult CARD32

blue_max CARD32

blue_muilt CARD32

base pixel CARD32

visua_id VISUALID Visual to which colormap
belongs

kill_id CARD32 ID for destroying the resources

When deleting or replacing an RGB_COLOR_MAP, it is not sufficient to delete the property; it is
important to free the associated colormap resources aswell. If kill_id is greater than one, the resources
should be freed by issuing aKi | | O i ent request with kill_id as the argument. If kill_id is one,
the resources should be freed by issuing a Fr eeCol or map request with colormap as the colormap
argument. If kill_id is zero, no attempt should be made to free the resources. A client that creates an
RGB_COLOR_MAP for which the colormap resource is created specifically for this purpose should
set kill_id to one (and can create more than one such standard colormap using a single connection).
A client that creates an RGB_COLOR_MAP for which the colormap resource is shared in some way
(for example, isthe default colormap for the root window) should create an arbitrary resource and use
itsresource ID for kill_id (and should create no other standard colormaps on the connection).

Convention

If an RGB_COLOR_MAP property is too short to contain the visual_id field, it
can be assumed that the visual_id is the root visual of the appropriate screen. If an
RGB_COLOR_MAP property is too short to contain the kill_id field, a value of
zero can be assumed.

During the connection handshake, the server informsthe client of the default colormap for each screen.
Thisisacolormap for the root visual, and clients can use it to improve the extent of colormap sharing
if they use the root visual.

The Keyboard Mapping

The X server containsatable (which isread by Get Keyboar dMappi ng requests) that describesthe
set of symbolsappearing on the corresponding key for each keycode generated by the server. Thistable
does not affect the server's operationsin any way; it issimply adatabase used by clientsthat attempt to
understand the keycodes they receive. Nevertheless, it is a shared resource and requires conventions.

It is possible for clients to modify this table by using a ChangeKeyboar dMappi ng request. In
general, clients should not do this. In particular, thisis not the way in which clients should implement
key bindings or key remapping. The conversion between a sequence of keycodes received from the
server and a string in a particular encoding is a private matter for each client (asit must bein aworld
where applications may be using different encodings to support different languages and fonts). See
the Xlib reference manual for converting keyboard events to text.

Theonly valid reason for using aChangeKeyboar dMappi ng reguest iswhen the symbols written
on the keys have changed as, for example, when a Dvorak key conversion kit or aset of APL keycaps
has been installed. Of course, aclient may have to take the change to the keycap on trust.

53

Manipulation of Shared Resources

The following illustrates a permissible interaction between a client and a user:

* "You just started me on a server without a Pause key. Please choose a key to be the Pause key and
pressit now."

» Pressesthe Scroll Lock key
» "Adding Pause to the symbols on the Scroll Lock key: Confirm or Abort."
» Confirms

» Uses a ChangeKeyboar dMappi ng request to add Pause to the keycode that already contains
Scroll Lock and issues this request, " Please paint Pause on the Scroll Lock key." Clients should not
use ChangeKeyboar dMappi ng requests.

If aclient succeedsin changing the keyboard mapping table, all clientswill receive Mappi ngNot i fy
(request==K eyboard) events. There is no mechanism to avoid receiving these events.

Convention

Clients receiving Mappi ngNot i fy (request==Keyboard) events should update
any internal keycode trandlation tables they are using.

The Modifier Mapping

X Version 11 supports 8 modifier bits of which 3 are preassigned to Shift, Lock, and Control. Each
modifier bitiscontrolled by the state of a set of keys, and these sets are specified in atable accessed by
Get Modi fi er Mappi ng and Set Modi fi er Mappi ng requests. This table is a shared resource
and requires conventions.

A client that needs to use one of the preassigned modifiers should assume that the modifier table
has been set up correctly to control these modifiers. The Lock modifier should be interpreted as
Caps Lock or Shift Lock according as the keycodes in its controlling set include XK_Caps L ock or
XK_Shift_Lock.

Convention

Clients should determine the meaning of a modifier bit from the KeySyms being
used to control it.

A client that needs to use an extra modifier (for example, META) should do the following:

» Scan the existing modifier mappings. If it finds a modifier that contains a keycode whose set of
KeySymsincludes XK_Meta L or XK_Meta R, it should use that modifier bit.

« If thereisno existing modifier controlled by XK_Meta L or XK_Meta R, it should select an unused
maodifier bit (one with an empty controlling set) and do the following:

« If thereisakeycode with XL_Meta L inits set of KeySyms, add that keycode to the set for the
chosen modifier.

« If thereisakeycode with XL_Meta R in its set of KeySyms, add that keycode to the set for the
chosen modifier.

« If the controlling set is still empty, interact with the user to select one or more keysto be META.

« |f there are no unused modifier bits, ask the user to take corrective action.

Conventions

Manipulation of Shared Resources

« Clientsneeding amodifier not currently in use should assign keycodes carrying
suitable KeySyms to an unused modifier bit.

* Clientsassigning their own modifier bits should ask the user politely to remove
his or her hands from the key in question if their Set Modi f i er Mappi ng
request returnsaBusy status.

There is no good solution to the problem of reclaiming assignments to the five nonpreassigned
modifiers when they are no longer being used.

Convention

The user must use xnodmap or some other utility to deassign obsolete modifier
mappings by hand.

When a client succeeds in performing a Set Modi f i er Mappi ng reguest, all clients will receive
Mappi ngNot i fy (request==Modifier) events. There is no mechanism for preventing these events
from being received. A client that uses one of the nonpreassigned modifiersthat receives one of these
eventsshoulddoaCGet Modi fi er Mappi ng request to discover the new mapping, and if themodifier
it isusing has been cleared, it should reinstall the modifier.

Note that a Gr abSer ver request must be used to make the Get Modi fi er Mappi ng and
Set Modi f i er Mappi ng pair in these transactions atomic.

55

Chapter 7. Device Color
Characterization

The X protocol provides explicit Red, Green, and Blue (RGB) values, which are used to directly drive
a monitor, and color names. RGB values provide a mechanism for accessing the full capabilities of
the display device, but at the expense of having the color perceived by the user remain unknowable
through the protocol. Color names were originally designed to provide access to a device-independent
color database by having the server vendor tune the definitions of the colors in that textual database.
Unfortunately, this till does not provide the client any way of using an existing device-independent
color, nor for the client to get device-independent color information back about colors that it has
selected.

Furthermore, the client must be able to discover which set of colors are displayable by the device (the
device gamut), both to allow colors to be intelligently modified to fit within the device capabilities
(gamut compression) and to enable the user interface to display arepresentation of the reachable color
space to the user (gamut display).

Therefore, a system is needed that will provide full access to device-independent color spaces for X
clients. This system should use a standard mechanism for naming the colors, be able to provide names
for existing colors, and provide means by which unreachable colors can be modified to fall within
the device gamut.

We are fortunate in this area to have a seminal work, the 1931 CIE color standard, which is nearly
universally agreed upon as adequate for describing colors on CRT devices. This standard uses a tri-
stimulus model called CIE XY Z in which each perceivable color is specified as a triplet of numbers.
Other appropriate device-independent color models do exist, but most of them are directly traceable
back to this original work.

X device color characterization provides device-independent color spacesto X clients. It does this by
providing the barest possible amount of information to the client that allows the client to construct a
mapping between CIE XY Z and the regular X RGB color descriptions.

Device color characterization is defined by the name and contents of two window properties that,
together, permit converting between CIE XY Z space and linear RGB device space (such as standard
CRTSs). Linear RGB devices require just two pieces of information to completely characterize them:

« A 3x3matrix M and itsinverse M, which convert between XY Z and RGB intensity (RGBintensity):
XYZ =M™ x RGBinensity

» A way of mapping between RGB intensity and RGB protocol value. XDCCC supports three
mechanisms which will be outlined later.

If other devicetypes are eventually necessary, additional propertieswill be required to describe them.

XYZ <-> RGB Conversion Matrices

Because of the limited dynamic range of both XY Z and RGB intensity, these matriceswill be encoded
using afixed-point representation of a 32-bit two's complement number scaled by 2?7, giving arange
of -16t0 16 - g where g = 2%/,

These matrices will be packed into an 18-element list of 32-bit values, XYZ -> RGB matrix first, in
row major order and stored in the XDCCC_LINEAR_RGB_MATRICES properties (format = 32) on
the root window of each screen, using values appropriate for that screen.

56

Device Color Characterization

Thiswill be encoded as shown in the following table:

Field Type Comments
Moo INT32 Interpreted as a fixed-point
number -16 . x < 16
Mot INT32
INT32
M33 INT32
M0 INT32
Mg4 INT32
INT32
M35 INT32

Intensity (dA RGB Value Conversion

XDCCC provides two representations for describing the conversion between RGB intensity and the
actual X protocol RGB values:

0 RGB val ue/ RGB intensity |l evel pairs
1 RGB intensity ranp

In both cases, the relevant data will be stored in the XDCCC_LINEAR_RGB_CORRECTION
properties on the root window of each screen, using values appropriate for that screen, in whatever
format provides adequate resolution. Each property can consist of multiple entries concatenated
together, if different visuals for the screen require different conversion data. An entry with aVisuallD
of 0 specifies datafor all visuals of the screen that are not otherwise explicitly listed.

Thefirst representation is an array of RGB vaue/intensity level pairs, with the RGB valuesin strictly
increasing order. When converting, the client must linearly interpolate between adjacent entries in
the table to compute the desired value. This allows the server to perform gamma correction itself and
encode that fact in a short two-element correction table. Theintensity will be encoded as an unsigned
number to beinterpreted asavalue between 0 and 1 (inclusive). The precision of thisvaluewill depend
on the format of the property in which it is stored (8, 16, or 32 bits). For 16-bit and 32-bit formats,
the RGB value will simply be the value stored in the property. When stored in 8-bit format, the RGB
value can be computed from the value in the property by:

RGB sub value ~ = ~ { Property ~ Value ~ times ~ 65535} over 255

Because the three electron guns in the device may not be exactly alike in response characteristics, it
isnecessary to allow for three separate tables, one each for red, green, and blue. Therefore, each table
will be preceded by the number of entries in that table, and the set of tables will be preceded by the
number of tables. When three tables are provided, they will bein red, green, blue order.

Thiswill be encoded as shown in the following table:

XDCCC_LINEAR_RGB_CORRECTION Property Contents for Type 0 Correction

Field Type Comments

VisuallDO CARD Most significant portion of
Visua D

VisualD1 CARD Existsif and only if the property
formatis8

VisualD2 CARD Existsif and only if the property
format is 8

57

Device Color Characterization

Field Type Comments

VisualD3 CARD Least significant portion, exists
if and only if the property
formatis8 or 16

type CARD 0 for thistype of correction

count CARD Number of tables following
(either 1 or 3)

length CARD Number of pairs-1 followingin
thistable

value CARD X Protocol RBG vaue

intensity CARD Interpret as number O < intensity

1

<

Total of length+ 1 pairs of
value/intensity values

lengthg CARD Number of pairs-1followingin
thistable (if and only if count is
3

value CARD X Protocol RBG value

intensity CARD Interpret as anumber 0 <
intensity < 1

Total of length+1 pairs of
valuelintensity values

lengthb CARD Number of pairs-1 followingin
thistable (if and only if count is
3

value CARD X Protocol RBG value

intensity CARD Interpret as anumber 0 <
intensity < 1

Total of length+ 1 pairs of
valuefintensity values

The VisuaID isstored in 4, 2, or 1 pieces, depending on whether the property format is 8, 16, or 32,
respectively. The VisualID isalways stored most significant piece first. Note that the length fields are
stored as one less than the actual length, so 256 entries can be stored in format 8.

The second representation is a simple array of intensities for a linear subset of RGB values. The
expected size of this table is the bits-per-rgb-value of the screen, but it can be any length. This is
similar to the first mechanism, except that the RGB value numbers are implicitly defined by the index
in the array (indices start at 0):

RGB subvalue~=~{ Array ~ Index ~times~ 65535} over { Array ~Size~-~1}

When converting, the client may linearly interpolate between entriesin thistable. Theintensity values
will be encoded just as in the first representation.

Thiswill be encoded as shown in the following table:

XDCCC_LINEAR_RGB_CORRECTION Property Contents for Type 1 Correction

Field Type Comments

VisualDO CARD Most significant portion of
VisuallD

VisualD1 CARD Existsif and only if the property
formatis 8

58

Device Color Characterization

Field Type Comments

VisualD2 CARD Existsif and only if the property
format is 8

VisualD3 CARD Least significant portion, exists

if and only if the property
format is8 or 16

type CARD 1 for thistype of correction

count CARD Number of tables following
(either 1 or 3)

length CARD Number of pairs-1followingin
thistable

intensity CARD Interpret as number O < intensity

1

<

Total of length+ 1 pairs of
value/intensity values

lengthg CARD Number of pairs-1followingin
thistable (if and only if count is
3

intensity CARD Interpret as a number 0 <
intensity < 1

Total of length+ 1 pairs of
value/intensity values

lengthb CARD Number of pairs-1followingin
thistable (if and only if count is
3

intensity CARD Interpret as a number 0 <
intensity < 1

Total of length+ 1 pairs of
value/intensity values

59

Chapter 8. Conclusion

This document provides the protocol-level specification of the minimal conventions needed to
ensure that X Version 11 clients can interoperate properly. This document specifies interoperability
conventions only for the X Version 11 protocol. Clients should be aware of other protocols that
should be used for better interoperation in the X environment. The reader is referred to X Session
Management Protocol for information on session management, and to I nter-Client Exchange Protocol
for information on general -purpose communication among clients.

The X Registry

The X Consortium maintains a registry of certain X-related items, to aid in avoiding conflicts and
in sharing of such items. Readers are encouraged to use the registry. The classes of items kept in
the registry that are relevant to the ICCCM include property names, property types, selection names,
selection targets, WM_PROTOCOLS protocols, O i ent Message types, and application classes.
Requests to register items, or questions about registration, should be addressed to

xXregistry@x.org
or to

The X.Org Foundation -- X11 Registry
c/o Alan Coopersmith

Oracle Corporation

M/S SCA17-3824

4170 Network Circle

Santa Clara, CA 95054

USA

Electronic mail will be acknowledged upon receipt. Please allow up to 4 weeks for aformal response
to registration and inquiries.

The registry is published as part of the X software distribution from the X.Org Foundation. All
registered items must have the postal address of someone responsible for the item or areferenceto a
document describing the item and the postal address of where to write to obtain the document.

60

Appendix A. Revision History

This appendix describes the revision history of this document and summarizes the incompatibilities
between this and earlier versions.

The X11R2 Draft

TheFebruary 25, 1988, draft that wasdistributed aspart of X Version 11, Release 2, wasclearly labeled
as such, and many areas were explicitly labeled as liable to change. Nevertheless, in the revision
work done since then, we have been very careful not to introduce gratuitous incompatibility. As far
as possible, we have tried to ensure that clients obeying the conventions in the X11R2 draft would
till work.

The July 27, 1988, Draft

The Consortium review was based on adraft dated July 27, 1988. This draft included several areasin
which incompatibilities with the X11R2 draft were necessary:

The use of property None in Convert Sel ecti on requests is no longer alowed. Owners that
receive them are free to use the target atom as the property to respond with, which will work in
most cases.

The protocol for INCREMENTAL type properties as selection replies has changed, and the name
has been changed to INCR. Selection requestors are free to implement the earlier protocol if they
receive properties of type INCREMENTAL.

The protocol for INDIRECT type properties as selection replies has changed, and the name has
been changed to MUL TIPLE. Selection requestors are free to implement the earlier protocol if they
receive properties of type INDIRECT.

The protocol for the special CLIPBOARD client has changed. The earlier protocol is subject to race
conditions and should not be used.

The set of state valuesin WM _HINTS.initial_state has been reduced, but the values that are till
valid are unchanged. Window managers should treat the other values sensibly.

The methods an application uses to change the state of its top-level window have changed but in
such away that cases that used to work will still work.

The X, y, width, and height fields have been removed from the WM_NORMAL _HINTS property
and replaced by pad fields. Values set into these fields will be ignored. The position and size of the
window should be set by setting the appropriate window attributes.

A pair of base fields and a win_gravity field have been added to the WM_NORMAL_HINTS
property. Window managers will assume values for these fields if the client sets a short property.

The Public Review Drafts

The Consortium review resulted in several incompatible changes. These changes were included in
drafts that were distributed for public review during the first half of 1989.

The messages field of the WM _HINTS property was found to be unwieldy and difficult to evolve.
It has been replaced by the WM _PROTOCOL S property, but clients that use the earlier mechanism
can be detected because they set the messages bit in the flags field of the WM _HINTS property,
and window managers can provide a backwards compatibility mode.

61

Revision History

e The mechanism described in the earlier draft by which clients installed their own subwindow
colormaps could not be made to work reliably and mandated some features of the look and fedl.
It has been replaced by the WM_COLORMAP_WINDOWS property. Clients that use the earlier
mechanism can be detected by the WM _COL ORMAPS property they set on their top-level window,
but providing areliable backwards compatibility mode is not possible.

» The recommendations for window manager treatment of top-level window borders have been
changed as those in the earlier draft produced problems with Visibility events. For nonwindow
manager clients, there is no incompatibility.

» The pseudoroot facility in the earlier draft has been removed. Although it has been successfully
implemented, it turns out to be inadequate to support the uses envisaged. An extension will be
required to support these uses fully, and it was felt that the maximum freedom should be left to
the designers of the extension. In general, the previous mechanism was invisible to clients and no
incompatibility should result.

e The addition of the WM_DELETE _WINDOW protocol (which prevents the danger that
multi-window clients may be terminated unexpectedly) has meant some changes in the
WM_SAVE_YOURSELF protocoal, to ensure that the two protocols are orthogonal. Clients using
the earlier protocol can be detected (see WM_PROTOCOL S above) and supported in a backwards
compatibility mode.

» The conventions in Section 14.3.1. of Xlib - C Language X Interface regarding properties of type
RGB_COL OR_MAP have been changed, but clientsthat use the earlier conventions can be detected
because their properties are 4 bytes shorter. These clients will work correctly if the server supports
only asingle Visua or if they use only the Visua of the root. These are the only cases in which
they would have worked, anyway.

Version 1.0, July 1989

The public review resulted in a set of mostly editorial changes. The changes in version 1.0 that
introduced some degree of incompatibility with the earlier drafts are:

e A new section (the section called “Grabs’) was added covering the window manager's use of
Grabs. Therestrictions it imposes should affect only window managers.

» The TARGETS selection target has been clarified, and it may be necessary for clientsto add some
entriesto their replies.

» A selection owner using INCR transfer should no longer replace targetsin a MULTIPLE property
with the atom INCR.

» Thecontentsof theC i ent Message event sent by aclient to iconify itself has been clarified, but
there should be no incompatibility because the earlier contents would not in fact have worked.

* The border-width in synthetic Conf i gur eNot i fy eventsis now specified, but this should not
cause any incompatibility.

 Clientsare now asked to set a border-width on all Conf i gur eW ndow requests.

* Window manager properties on icon windows now will be ignored, but there should be no
incompatibility because there was no specification that they be obeyed previoudly.

» The ordering of rea and synthetic Confi gureNoti fy events is now specified, but any
incompatibility should affect only window managers.

e The semantics of WM_SAVE_YOURSELF have been clarified and restricted to be a checkpoint
operation only. Clientsthat were using it as part of a shutdown sequence may need to be modified,
especialy if they were interacting with the user during the shutdown.

62

Revision History

A kill_idfield has been added to RGB_COLOR_MAP properties. Clientsusing earlier conventions
can be detected by the size of their RGB_COLOR_MAP properties, and the cases that would have
worked will still work.

Version 1.1

Version 1.1 wasreleased with X 11R5 in September 1991. In addition to some minor editorial changes,
there were afew semantic changes since Version 1.0:

The section on Device Color Characterization was added.
The meaning of the NULL property type was clarified.

Appropriate references to Compound Text were added.

Public Review Draft, December 1993

The following changes have been made in preparing the public review draft for Version 2.0.

[PO1] Addition of adviceto clients on how to keep track of atop-level window's absolute position
on the screen.

[PO3] A technique for clients to detect when it is safe to reuse atop-level window has been added.

[PO6] the section called “Colormaps’ , on colormaps, has been rewritten. A new feature that allows
clientsto install their own colormaps has a so been added.

[PO8] The LENGTH target has been deprecated.
[P11] The manager selections facility was added.

[P17] The definition of the aspect ratio fields of the WM_NORMAL_HINTS property has been
changed to include the base size.

[P19] St ati cG avi ty has been added to the list of values allowed for the win_gravity field of
the WM _HINTS property. The meaning of the Cent er Gr avi t y value has been clarified.

[P20] A means for clientsto query the ICCCM compliance level of the window manager has been
added.

[P22] The definition of the MULTIPLE selection target has been clarified.

[P25] A definition of "top-level window" has been added. The WM_STATE property has been
defined and exposed to clients.

[P26] The definition of window states has been clarified and the wording regarding window state
changes has been made more consistent.

[P27] Clarified the rules governing when window managers are required to send synthetic
Confi gureNoti fy events.

[P28] Added a recommended technique for setting the input focus to a window as soon as it is
mapped.

[P29] The required lifetime of resource IDs named in window manager properties has been
specified.

[P30] Advice for dealing with keystrokes and override-redirect windows has been added.

[P31] A statement on the ownership of resources transferred through the selection mechanism has
been added.

63

Revision History

[P32] The definition of the CLIENT_WINDOW target has been clarified.

[P33] A rule about requiring the selection owner to reacquire the selection under certain
circumstances has been added.

[P42] Added several new selection targets.

[P44] Ambiguous wording regarding the withdrawal of top-level windows has been removed.
[P45] A facility for requestors to pass parameters during a selection request has been added.
[P49] A convention on discrimated names has been added.

[P57] The C_STRING property type was added.

[P62] An ordering requirement on processing selection requests was added.

[P63] The Vi si bl eHi nt flag was added.

[P64] The session management section has been updated to align with the new session management
protocol. The old session management conventions have been moved to Appendix C.

Referencesto the never-forthcoming Window and Session Manager Conventions Manual have been
removed.

Information on the X Registry and references to the session management and | CE documents have
been added.

Numerous editorial and typographical improvements have been made.

Version 2.0, April 1994

The following changes have been made in preparation for releasing the final edition of Version 2.0
with X11R6.

The PIXMAP selection target has been revised to return a property of type PIXMAP instead of
type DRAWABLE.

The session management section has been revised slightly to correspond with the changes to the X
Session Management Protocol.

Window managers are now prohibited from placing Cur r ent Ti e in the timestamp field of
WM_TAKE_FOCUS messages.

In the WM_HINTS property, the Vi si bl eHi nt flag has been renamed to Ur gencyHi nt . Its
semantics have also been defined more thoroughly.

Additional editorial and typographical changes have been made.

Appendix B. Suggested Protocol
Revisions

During the development of these conventions, a number of inadeguacies have been discovered in the
core X11 protocol. They are summarized here asinput to an eventual protocol revision design process:

There is no way for anyone to find out the last-change time of a selection. The
Get Sel ecti onOmner request should be changed to return the last-change time as well as the
owner.

Thereis no way for aclient to find out which selection atoms are valid.

There would be no need for WM_TAKE_FOCUS if the Focus| n event contained a timestamp
and aprevious-focusfield. This could avoid the potential race condition. Thereis space in the event
for thisinformation; it should be added at the next protocol revision.

There is a race condition in the I nst al | Col or map request. It does not take a timestamp
and may be executed after the top-level colormap has been uninstalled. The next protocol
revision should provide the timestamp in the | nst al | Col or map, Uni nst al | Col or map,
Li st nstal | edCol or maps reguests and in the Col or mapNot i f y event. The timestamp
should be used in a similar way to the last-focus-change time for the input focus. The lack of
timestamps in these packets is the reason for restricting colormap installation to the window
manager.

The protocol needs to be changed to provide some way of identifying the Visual and the Screen
of acolormap.

There should be some way to reclaim assignments to the five nonpreassigned modifiers when they
are no longer needed. The manua method is unpleasantly low-tech.

65

Appendix C. Obsolete Session
Manager Conventions

This appendix contains obsolete conventions for session management using X properties and
messages. The conventions described here are deprecated and are described only for historical interest.
For further information on session management, see X Session Management Protocol.

Properties

The client communicates with the session manager by placing two properties(WM_COMMAND and
WM_CLIENT_MACHINE) on its top-level window. If the client has a group of top-level windows,
these properties should be placed on the group leader window.

The window manager is responsible for placing a WM_STATE property on each top-level client
window for use by session managers and other clients that need to be able to identify top-level client
windows and their state.

WM _COMMAND Property

TheWM_COMMAND property representsthe command used to start or restart the client. By updating
this property, clients should ensure that it always reflects a command that will restart them in their
current state. The content and type of the property depend on the operating system of the machine
running the client. On POSI X-conformant systems using ISO Latin-1 characters for their command
lines, the property should:

* Beof type STRING

» Contain alist of null-terminated strings

» Beinitialized from argv
Other systems will need to set appropriate conventions for the type and contents of
WM_COMMAND properties. Window and session managers should not assume that STRING is
the type of WM_COMMAND or that they will be able to understand or display its contents.

Note that WM_COMMAND strings are null-terminated and differ from the general conventions that
STRING properties are null-separated. This inconsistency is necessary for backwards compatibility.

A client with multiple top-level windows should ensure that exactly one of them has a
WM_COMMAND with nonzero length. Zero-length WM_COMMAND properties can be used to
reply to WM_SAVE_YOURSELF messages on other top-level windows but will otherwise be
ignored.

WM_CLIENT MACHINE Property

This property isdescribed in the section called “WM_CLIENT_MACHINE Property”.

Termination

Because they communicate by means of unreliable network connections, clients must be prepared for
their connection to the server to be terminated at any time without warning. They cannot depend on
getting notification that termination is imminent or on being able to use the server to negotiate with
the user about their fate. For example, clients cannot depend on being able to put up adialog box.

66

Obsolete Session
Manager Conventions

Similarly, clients may terminate at any time without notice to the session manager. When a client
terminates itself rather than being terminated by the session manager, it is viewed as having resigned
from the session in question, and it will not be revived if the session is revived.

Client Responses to Session Manager
Actions

Clients may need to respond to session manager actions in two ways:
e Saving their internal state

 Deleting awindow

Saving Client State

Clients that want to be warned when the session manager feels that they should save
their internal state (for example, when termination impends) should include the atom
WM_SAVE _YOURSELF in the WM_PROTOCOLS property on their top-level windows to
participate in the WM_SAVE_Y OURSELF protocol. They will receive aCl i ent Message event
as described in the section called “ClientMessage Events’ with the atom WM_SAVE_YOURSELF
inits data[0] field.

Clients that receive WM_SAVE_Y OURSELF should place themselves in a state from which they
can be restarted and should update WM_COMMAND to be a command that will restart them in this
state. The session manager will be waiting for a Pr opert yNot i fy event on WM_COMMAND
as a confirmation that the client has saved its state. Therefore, WM_COMMAND should be updated
(perhaps with a zero-length append) even if its contents are correct. No interactions with the user are
permitted during this process.

Once it hasreceived this confirmation, the session manager will feel freeto terminate the client if that
iswhat the user asked for. Otherwise, if the user asked for the session to be put to sleep, the session
manager will ensure that the client does not receive any mouse or keyboard events.

After recelving a WM_SAVE _YOURSELF, saving its state, and updating WM_COMMAND, the
client should not change its state (in the sense of doing anything that would require a change to
WM_COMMAND) until it receives a mouse or keyboard event. Once it does so, it can assume that
the danger is over. The session manager will ensure that these events do not reach clients until the
danger is over or until the clients have been killed.

Irrespective of how they are arranged in window groups, clients with multiple top-level windows
should ensure the following:

» Only one of their top-level windows has a nonzero-length WM _COMMAND property.
» They respondto aWM_SAVE Y OURSELF message by:
* First, updating the nonzero-length WM_COMMAND property, if necessary

 Second, updating the WM_COMMAND property on the window for which they received the
WM_SAVE_YOURSELF messageif it was not updated in the first step

Receiving WM_SAVE_YOURSELF on a window is, conceptually, a command to save the entire
client state. *

! This convention has changed since earlier drafts because of the introduction of the protocol in the next section. In the public review draft,
there was ambiguity as to whether WM_SAVE_Y OURSEL F was a checkpoint or a shutdown facility. It is now unambiguously a checkpoint
facility; if a shutdown facility is judged to be necessary, a separate WM_PROTOCOLS protocol will be developed and registered with the
X Consortium.

67

Obsolete Session
Manager Conventions

Window Deletion

Windows are deleted usingthe WM_DELETE_WINDOW protocol, whichisdescribed in the section
called “Window Deletion”.

Summary of Session Manager Property
Types

The session manager properties are listed in the following table:

Name Type Format See Section

WM_CLIENT_MACHINEXT the section called
“WM_CLIENT_MACHINE
Property”

WM_COMMAND TEXT the section called
“WM_COMMAND
Property”

WM_STATE WM_STATE 32 the section called
“WM_STATE
Property”

68

	Inter-Client Communication Conventions Manual
	Table of Contents
	Preface to Version 2.0
	Preface to Version 1.1
	Chapter 1. Introduction
	Evolution of the Conventions
	Atoms
	What Are Atoms?
	Predefined Atoms
	Naming Conventions
	Semantics
	Name Spaces
	Discriminated Names

	Chapter 2. Peer-to-Peer Communication by Means of Selections
	Acquiring Selection Ownership
	Responsibilities of the Selection Owner
	Giving Up Selection Ownership
	Voluntarily Giving Up Selection Ownership
	Forcibly Giving Up Selection Ownership

	Requesting a Selection
	Large Data Transfers
	Use of Selection Atoms
	Selection Atoms
	The PRIMARY Selection
	The SECONDARY Selection
	The CLIPBOARD Selection

	Target Atoms
	Selection Targets with Side Effects
	DELETE
	INSERT_SELECTION
	INSERT_PROPERTY

	Use of Selection Properties
	TEXT Properties
	INCR Properties
	DRAWABLE Properties
	SPAN Properties

	Manager Selections

	Chapter 3. Peer-to-Peer Communication by Means of Cut Buffers
	Chapter 4. Client-to-Window-Manager Communication
	Client's Actions
	Creating a Top-Level Window
	Client Properties
	WM_NAME Property
	WM_ICON_NAME Property
	WM_NORMAL_HINTS Property
	WM_HINTS Property
	WM_CLASS Property
	WM_TRANSIENT_FOR Property
	WM_PROTOCOLS Property
	WM_COLORMAP_WINDOWS Property
	WM_CLIENT_MACHINE Property

	Window Manager Properties
	WM_STATE Property
	WM_ICON_SIZE Property

	Changing Window State
	Configuring the Window
	Changing Window Attributes
	Input Focus
	Colormaps
	Icons
	Pop-up Windows
	Window Groups

	Client Responses to Window Manager Actions
	Reparenting
	Redirection of Operations
	Window Move
	Window Resize
	Iconify and Deiconify
	Colormap Change
	Input Focus
	ClientMessage Events
	Window Deletion

	Redirecting Requests

	Communication with the Window Manager by Means of Selections
	Summary of Window Manager Property Types

	Chapter 5. Session Management and Additional Inter-Client Exchanges
	Client Support for Session Management
	Window Manager Support for Session Management
	Support for ICE Client Rendezvous

	Chapter 6. Manipulation of Shared Resources
	The Input Focus
	The Pointer
	Grabs
	Colormaps
	The Keyboard Mapping
	The Modifier Mapping

	Chapter 7. Device Color Characterization
	XYZ <-> RGB Conversion Matrices
	Intensity (dA RGB Value Conversion

	Chapter 8. Conclusion
	The X Registry

	Appendix A. Revision History
	The X11R2 Draft
	The July 27, 1988, Draft
	The Public Review Drafts
	Version 1.0, July 1989
	Version 1.1
	Public Review Draft, December 1993
	Version 2.0, April 1994

	Appendix B. Suggested Protocol Revisions
	Appendix C. Obsolete Session Manager Conventions
	Properties
	WM_COMMAND Property
	WM_CLIENT_MACHINE Property

	Termination
	Client Responses to Session Manager Actions
	Saving Client State
	Window Deletion

	Summary of Session Manager Property Types

