# sympy/galgebra/vector.py
"""
vector.py is a helper class for the MV class that defines the basis
vectors and metric and calulates derivatives of the basis vectors for
the MV class.
"""
import itertools
import copy
from sympy import Symbol, S, Matrix, trigsimp, diff, expand
from sympy.galgebra.printing import GA_Printer
from sympy.galgebra.stringarrays import str_array
from sympy.galgebra.ncutil import linear_derivation, bilinear_product
from sympy.galgebra.debug import oprint
[docs]def flatten(lst):
return list(itertools.chain(*lst))
[docs]def TrigSimp(x):
return trigsimp(x, recursive=True)
[docs]class Vector(object):
"""
Vector class.
Setup is done by defining a set of basis vectors in static function 'Bases'.
The linear combination of scalar (commutative) sympy quatities and the
basis vectors form the vector space. If the number of basis vectors
is 'n' the metric tensor is formed as an n by n sympy matrix of scalar
symbols and represents the dot products of pairs of basis vectors.
"""
is_orthogonal = False
[docs] @staticmethod
def setup(base, n=None, metric=None, coords=None, curv=(None, None), debug=False):
"""
Generate basis of vector space as tuple of vectors and
associated metric tensor as Matrix. See str_array(base,n) for
usage of base and n and str_array(metric) for usage of metric.
To overide elements in the default metric use the character '#'
in the metric string. For example if one wishes the diagonal
elements of the metric tensor to be zero enter metric = '0 #,# 0'.
If the basis vectors are e1 and e2 then the default metric -
Vector.metric = ((dot(e1,e1),dot(e1,e2)),dot(e2,e1),dot(e2,e2))
becomes -
Vector.metric = ((0,dot(e1,e2)),(dot(e2,e1),0)).
The function dot returns a Symbol and is symmetric.
The functions 'Bases' calculates the global quantities: -
Vector.basis
tuple of basis vectors
Vector.base_to_index
dictionary to convert base to base inded
Vector.metric
metric tensor represented as a matrix of symbols and numbers
"""
Vector.is_orthogonal = False
Vector.coords = coords
Vector.subscripts = []
base_name_lst = base.split(' ')
# Define basis vectors
if '*' in base:
base_lst = base.split('*')
base = base_lst[0]
Vector.subscripts = base_lst[1].split('|')
base_name_lst = []
for subscript in Vector.subscripts:
base_name_lst.append(base + '_' + subscript)
else:
if len(base_name_lst) > 1:
Vector.subscripts = []
for base_name in base_name_lst:
tmp = base_name.split('_')
Vector.subscripts.append(tmp[-1])
elif len(base_name_lst) == 1 and Vector.coords is not None:
base_name_lst = []
for coord in Vector.coords:
Vector.subscripts.append(str(coord))
base_name_lst.append(base + '_' + str(coord))
else:
raise TypeError("'%s' does not define basis vectors" % base)
basis = []
base_to_index = {}
index = 0
for base_name in base_name_lst:
basis_vec = Vector(base_name)
basis.append(basis_vec)
base_to_index[basis_vec.obj] = index
index += 1
Vector.base_to_index = base_to_index
Vector.basis = tuple(basis)
# define metric tensor
default_metric = []
for bv1 in Vector.basis:
row = []
for bv2 in Vector.basis:
row.append(Vector.basic_dot(bv1, bv2))
default_metric.append(row)
Vector.metric = Matrix(default_metric)
if metric is not None:
if metric[0] == '[' and metric[-1] == ']':
Vector.is_orthogonal = True
metric_str_lst = metric[1:-1].split(',')
Vector.metric = []
for g_ii in metric_str_lst:
Vector.metric.append(S(g_ii))
Vector.metric = Matrix(Vector.metric)
else:
metric_str_lst = flatten(str_array(metric))
for index in range(len(metric_str_lst)):
if metric_str_lst[index] != '#':
Vector.metric[index] = S(metric_str_lst[index])
Vector.metric_dict = {} # Used to calculate dot product
N = range(len(Vector.basis))
if Vector.is_orthogonal:
for ii in N:
Vector.metric_dict[Vector.basis[ii].obj] = Vector.metric[ii]
else:
for irow in N:
for icol in N:
Vector.metric_dict[(Vector.basis[irow].obj, Vector.basis[icol].obj)] = Vector.metric[irow, icol]
# calculate tangent vectors and metric for curvilinear basis
if curv != (None, None):
X = S.Zero
for (coef, base) in zip(curv[0], Vector.basis):
X += coef * base.obj
Vector.tangents = []
for (coord, norm) in zip(Vector.coords, curv[1]):
tau = diff(X, coord)
tau = trigsimp(tau)
tau /= norm
tau = expand(tau)
Vtau = Vector()
Vtau.obj = tau
Vector.tangents.append(Vtau)
metric = []
for tv1 in Vector.tangents:
row = []
for tv2 in Vector.tangents:
row.append(tv1 * tv2)
metric.append(row)
metric = Matrix(metric)
metric = metric.applyfunc(TrigSimp)
Vector.metric_dict = {}
if metric.is_diagonal:
Vector.is_orthogonal = True
tmp_metric = []
for ii in N:
tmp_metric.append(metric[ii, ii])
Vector.metric_dict[Vector.basis[ii].obj] = metric[ii, ii]
Vector.metric = Matrix(tmp_metric)
else:
Vector.is_orthogonal = False
Vector.metric = metric
for irow in N:
for icol in N:
Vector.metric_dict[(Vector.basis[irow].obj, Vector.basis[icol].obj)] = Vector.metric[irow, icol]
Vector.norm = curv[1]
if debug:
oprint('Tangent Vectors', Vector.tangents,
'Metric', Vector.metric,
'Metric Dictionary', Vector.metric_dict,
'Normalization', Vector.norm, dict_mode=True)
# calculate derivatives of tangent vectors
Vector.dtau_dict = None
dtau_dict = {}
for x in Vector.coords:
for (tau, base) in zip(Vector.tangents, Vector.basis):
dtau = tau.diff(x).applyfunc(TrigSimp)
result = S.Zero
for (t, b) in zip(Vector.tangents, Vector.basis):
t_dtau = TrigSimp(t * dtau)
result += t_dtau * b.obj
dtau_dict[(base.obj, x)] = result
Vector.dtau_dict = dtau_dict
if debug:
oprint('Basis Derivatives', Vector.dtau_dict, dict_mode=True)
return tuple(Vector.basis)
def __init__(self, basis_str=None):
if isinstance(basis_str, Vector):
self.obj = basis_str
else:
if basis_str is None or basis_str == '0':
self.obj = S(0)
else:
self.obj = Symbol(basis_str, commutative=False)
"""
def diff(self, x):
(coefs, bases) = linear_expand(self.obj)
result = S.Zero
for (coef, base) in zip(coefs, bases):
result += diff(coef, x) * base
return result
"""
def diff(self, x):
Dself = Vector()
if isinstance(Vector.dtau_dict, dict):
Dself.obj = linear_derivation(self.obj, Vector.Diff, x)
else:
Dself.obj = diff(self.obj, x)
return Dself
[docs] @staticmethod
def basic_dot(v1, v2):
"""
Dot product of two basis vectors returns a Symbol
"""
i1 = list(Vector.basis).index(v1) # Python 2.5
i2 = list(Vector.basis).index(v2) # Python 2.5
if i1 < i2:
dot_str = '(' + str(Vector.basis[i1]) + '.' + str(Vector.basis[i2]) + ')'
else:
dot_str = '(' + str(Vector.basis[i2]) + '.' + str(Vector.basis[i1]) + ')'
return Symbol(dot_str)
@staticmethod
def dot(b1, b2):
if Vector.is_orthogonal:
if b1 != b2:
return S.Zero
else:
return Vector.metric_dict[b1]
else:
return Vector.metric_dict[(b1, b2)]
@staticmethod
def Diff(b, x):
return Vector.dtau_dict[(b, x)]
######################## Operator Definitions#######################
def __str__(self):
return GA_Printer().doprint(self)
def __mul__(self, v):
if not isinstance(v, Vector):
self_x_v = Vector()
self_x_v.obj = self.obj * v
return self_x_v
else:
result = expand(self.obj * v.obj)
result = bilinear_product(result, Vector.dot)
return result
def __rmul__(self, s):
s_x_self = Vector()
s_x_self.obj = s * self.obj
return s_x_self
def __add__(self, v):
self_p_v = Vector()
self_p_v.obj = self.obj + v.obj
return self_p_v
def __add_ab__(self, v):
self.obj += v.obj
return
def __sub__(self, v):
self_m_v = Vector()
self_m_v.obj = self.obj - v.obj
return self_m_v
def __sub_ab__(self, v):
self.obj -= v.obj
return
def __pos__(self):
return self
def __neg__(self):
n_self = copy.deepcopy(self)
n_self.obj = -self.obj
return n_self
def applyfunc(self, fct):
fct_self = Vector()
fct_self.obj = fct(self.obj)
return fct_self