AcrolIgX.Net

The grayhints Package

D. P. Story

Copyright © 2017 dpstory@acrotex.net www.acrotex.net
Prepared: March 20, 2017 Version v1.0, 2017/03/02

mailto:dpstory@acrotex.net
www.acrotex.net

Table of Contents
Introduction
Package options

Creating a form field with a gray hint

3.1 Variable text field, no calculate script.
3.2 Variable text field, with calculate script
3.3 Changing the colors for grayhints.
3.4 Remarks on the usealtadobeoption.

My retirement

1. Introduction

We often see in HTML pages or in compiled executable applications, form fields (text
fields, input fields) that require user input. The untouched field has text within it
informing the user of the nature of the data to be entered into the field. This, usually,
grayed hint immediately disappears when the user focus the cursor on the field. We
illustrate the concept with an example or two.

| | [Reset]

Of course, the usual tooltips may also be provided.

It is not natural for Adobe form fields to do this, it takes some support code for it
to work properly; scripts for the Keystroke, Format, OnFocus, and OnBlur events are
needed.

2. Package options

Without passing any options, the eforms package of AeB, dated 2017/02/27, is required
and a document JavaScript function A1TowCalc() is automatically embedded in the
document; however there are options to modify this default setup.

usehyforms By default, this package requires eforms, dated 2017/02/27; however, if
you are more comfortable using the form fields of hyperref, specify the option
usehyforms.! When usehyforms is specified, insdljs dated 2017/03/02 or later
is required. This requirement is to support the usealtadobe, discussed next.

nocalcs If this option is taken, the document JavaScript function ATTowCaTlc () is not
embedded in the document. The implications are that you are not using any
calculation fields.

usealtadobe If you have the Acrobat application, you can edit form fields. When you
write custom formatting scripts (as does this package) using Adobe’s built-in func-
tions, such as AFNumber_Keystroke and AFNumber_Format, the user-interface
for editing the custom script is not available. The usealtadobe option is passed
to insldjs; insdljs, in turn, inputs alternate names for the common Adobe built-ins.
Refer to Section 3.4 for more information.

nod1js When this option is specified, there are no requirements placed on this pack-
age; that is, neither eforms nor insdljs are required.

Demo file: gh-eforms.tex, gh-hyperref.tex. The latter file uses the usehyforms
option (and hyperref form fields), while the former uses the eforms package.

Leforms and hyperref form fields can be used in one document.

3. Creating a form field with a gray hint

In this documentation, we use eforms form fields to illustrate concepts, the demonstra-

tion file gh-hyperref. tex has the form field markup for the case of hyperref forms.
There are two cases: (1) an ordinary variable text form field (this includes text fields

and editable combo boxes) with no calculate script; (2) same as (1), but the field has a

calculate script.

3.1. Variable text field, no calculate script

When there is no calculate script, to obtain a gray hint, it is necessary to supply scripts
for the Format, Keystroke, OnFocus, and OnBlur events. The scripts are all defined
in the grayhints package. In addition, the color of the text in the text field must be

appropriate. We illustrate,

1 \textField[\TU{Enter your first name so I can get to know you better}

2
3
4
5
6

\textColor{\matchGray}\AA{%
\AAKeystroke{\KeyToGray}
\AAFormat{\FmtToGray{First Name}}
\AAOnFocus{\JS{\FocusToBlack}}
\AAONBTur{\JS{\BlurToBlack}}

7 Y1{NameFirst}{2in}{11lbp}

By default, the text color is black and the grayed hint text is light gray. The tool tip
(\TU) is grayed out, as it is optional. In line (2) we match the color for the text to the
gray color using the command \matchGray of grayhints. Within the argument of \AA,

the \AAFormat, \AAKeystroke, \AAOnFocus, and \AAOnBTur scripts are inserted.

Keystroke Script: In line (3), \KeyToGray is placed within the argument of
\AAKeystroke. This script changes the color of the text to gray when
the field is empty.

Format Script: The script snippet \FmtToGray takes a single argument,
which is the text of the hint. In line (4) the hint is ‘First Name’.

OnFocus Script: The code snippet \FocusToBTlack is inserted into the argu-
ment of \OnFocus, as seen in line (5). When the field comes into focus,
this script changes the color to the normal color (usually black).

OnBlur Script: In line (6), the \BlurToBlack script is placed within the
argument of \OnBlur, in the manner indicated. When the field loses
focus (is blurred), the script changes the color of text to gray if the field
is empty or to its normal color (usually black), otherwise.

The hyperref form field counterpart to the above example is,

1 \TextFieTld[name={NameFirst},

N v ke W N

height=11bp,width=2in,
color=\matchGray,
keystroke=\KeyToGray,
format=\FmtToGray{First Name},
onfocus=\FocusToBlack,
onblur=\BlurToBlack] {}

Creating a form field with a gray hint 5

The two fields appear side-by-side:

| | | | [Reset]

Both fields appear in the ‘default’ appearance.

3.2. Variable text field, with calculate script

If you want to make calculations based on entries in other fields, you will need the code
snippet \CalcToGray as part of your calculate script.

1 \textField[\TU{The total for first and second integers}

2
3
4
5
6
7
8

9

\textColor{\matchGray}\AA{%

\AAKeystroke{AFNumber_Keystroke(0,1,0,0,"", true);\r\KeyToGray}

\AAFormat{AFNumber_Format(0,1,0,0,"",true) ;\r\FmtToGray{Total}}

\AACalculate{var cArray=new Array("Integer");\r
if(AllowCalc(cArray))AFSimple_Calculate("SUM", cArray);\r
\CalcToGray}

\AAOnFocus{\JS{\FocusToBlack}}

\AAONBTur{\JS{\BlurToBTlack}}}

10]{TotalNumbers}{1lin}{11lbp}

The use of \r is optional, the author uses this to format the script within the user-
interface of Acrobat. The \textColor (line (2)), \AAOnFocus (line (8)), and \AAOnBlur
(line (8)) are the same as earlier presented. Several comments are needed for the
\AAKeystroke, \AAFormat and \AACalculate lines.

e This is a number field, so we use the built-in functions AFNumber_Keystroke and

AFNumber_Format provided by the Adobe Acrobat and Adobe Acrobat Reader
distributions. In lines (3) and (4), the \KeyToGray and \FmtToGray code snippets
follow the built-ins.?

For the Calculate event, special techniques are used. We define an array cArray
(line (5)) consisting of the names of all the dependent fields we use to calculate
the value of this field. In line (6), we make the calculation (AFSimple_Calculate)
only if the document JavaScript function A1TowCalc(cArray) returns true. The
function returns true only if at least one of the fields is not empty. Following the
calculation comes the code snippet \CalcToGray; this changes the text color to
gray if the field is empty and to the normal color (usually black) otherwise.

The function ATTowCalc () is defined for all options except for the nod1js option.

Let’s go to the examples. Build three fields (four actually), in the first two enter integers,
the other two fields compute their sum.

@ |
@| I
3| I
@ |

|Reset|

2As a general rule, the code snippets \KeyToGray, \FmtToGray, and \CalcToGray should inserted after
any built-in functions.

Creating a form field with a gray hint 6

Enter numbers into the first two text fields (® and @), the totals of these two fields
appear in the last two fields (® and ®). Total field ® uses the recommended script
if(AllowCalc(cArray) (see line (6) above), whereas field @ does not. Initially, they
both behave the same way until you press the reset button. For field ® the gray hint
appears, for field ® the number zero (0) appears. This is because the calculation was
allowed to go forward, and the calculated value is zero even through none of the de-
pendent fields have a value. If you want the gray hint in the total field, you must use
the conditional if(AllowCalc(cArray).’

3.3. Changing the colors for gray hints

For the fields in which the gray hint scripts are used, there are two colors that are
relevant, the normal color (defaults to black) and the gray color (defaults to light gray).
The command \normalGrayColors{{(normalcolor)}{{graycolor)} sets this pair of
colors. The arguments for \normalGrayColors are JavaScript colors; they may be
in any of the following four forms: (1) a JavaScript color array ["RGB",1,0,0]; (2) a
predefined JavaScript color, such as color.red; (3) a declared (or named) ETgX color
such as red; or (4) a non-declared KIgX color such as [rgb]{1,0,0}. If the package
xcolor is not loaded, only methods (1) and (2) are supported.

The package default is \normalGrayColors{color.black}{color.1tGray}. The
predefined JavaScript colors are,

Color Models
GRAY RGB CMYK
color.black color.red color.cyan
color.white color.green color.magenta
color.dkGray color.blue
color.gray
color.1tGray

All these colors are defined in the KIEX color packages, except for possibly dkGray,
gray, and 1tGray. These three are defined in grayhints.

We repeat the ‘First Name’' example with different declared colors. We begin by
declaring,

\normalGrayColors{blue}{magenta}

then build a ‘gray hinted’ field,

[First Name | [Reset]

3.4. Remarks on the usealtadobe option

The usealtadobe option is useful for developers who have the Adobe application and
who wish to develop and test scripts that extend in the current work. The usealtadobe
option inputs from insdljs the following alternate names. As a general rule, all Adobe

3Hence, don’t use the nod1js option.

Creating a form field with a gray hint 7

built-in format, validate, and calculation functions that begin with ‘AF’ are given al-
ternate names that begin with ‘EF’. More specifically, the table below lists the effected

functions.

Adobe function name
AFNumber_Keystroke
AFNumber_Format
AFPercent_Keystroke
AFPercent_Format
AFDate_Format
AFDate_Keystroke
AFDate_FormatEx
AFTime_Keystroke
AFTime_Format
AFTime_FormatEx
AFDate_KeystrokeEx
AFSpecial_Keystroke
AFSpecial_Format
AFSpecial_KeystrokeEx
AFRange_Validate
AFRange_Validate
AFSimple_Calculate

Alternate function name
EFNumber_Keystroke
EFNumber_Format
EFPercent_Keystroke
EFPercent_Format
EFDate_Format
EFDate_Keystroke
EFDate_FormatEx
EFTime_Keystroke
EFTime_Format
EFTime_FormatEx
EFDate_KeystrokeEx
EFSpecial_Keystroke
EFSpecial_Format
EFSpecial_KeystrokeEx
EFRange_Validate
EFRange_Validate
EFSimple_Calculate

AFMergeChange EFMergeChange
Text Field Properties x Text Field Properties x
General Appearance Position Options Actions Format Validate Calculate General Appearance Position Options Actions Format Validate Calculate
Select format category: | Number v Select format category: | Custom v
Decimal Places: |0~ Custorn Format Script:
7 try{EFNumber_Format(0,1,0,0, true);}catch(e)(} Edit..
Sepeioriye. |LOG0 if(event.value=="")event.value= "First Integer");
Currency Symbol: | None v
Symbol Location: | Before with space Custom Keystroke Script
Negative Number Style: [Show parentheses try{EFNumber_Keystroke(0,1,0,0," true); Jcatch(e) Edit..
[J Use red text Y
ple of gurrent fggnat: ?3
B A A 4 A A o oW 4 ' 2B S N N N N Y W

(a) Using AFNumber_Format

(b) Using EFNumber_Format

Figure 1: Format tab: ‘AF’ versus ‘EF’ functions

Figure 1 shows the impact of using the ‘EF’ functions. On the left, AFNumber_Format
is used to format a number field that uses gray hints using the code

AFNumber_Format(0,1,0,0,"",true)\r\FmtToGray

As can be seen in sub-figure(a), or more accurately not seen, the code is not seen
through the user-interface of Acrobat. In sub-figure (b) the underlying code is seen (and
therefore editable through the user-interface) because the ‘EF’ version of the function
was used:

\try{EFNumber_Format(0,1,0,0,"",true)}catch(e){}\r\FmtToGray

Note this code is wrapped in a try/catch construct; this is optional. The insdljs pack-
age defines a helper command \d1TC to do the wrapping for you:

\dT1TC{EFNumber_Format(0,1,0,0,"",true) }\r\FmtToGray

When using pdflatex or xelatex, try/catch appears not to be needed, but when Adobe
Distiller is used, Acrobat throws an exception when the file is first created. The try/
catch suppresses (catches) the exception.

4. My retirement
Now, I simply must get back to it. 3§

	Table of Contents
	1 Introduction
	2 Package options
	3 Creating a form field with a gray hint
	3.1 Variable text field, no calculate script
	3.2 Variable text field, with calculate script
	3.3 Changing the colors for gray hints
	3.4 Remarks on the usealtadobe option

	4 My retirement

	NameFirst1:
	DateField1:
	NameFirst2:
	NameFirst3:
	reset:
	Integer:
	First:
	Second:

	TotalNumbers:
	TotalNumbers1:
	NameFirst4:

